Electronic Supplementary Information

Photolytic splitting of homodimeric quinonederived oxetanes studied by ultrafast transient absorption spectroscopy and quantum chemistry

Alejandro Blasco-Brusola, Lorena Tamarit, Miriam Navarrete-Miguel, Daniel Roca-Sanjuán, Miguel A. Miranda, Ignacio Vayá

Table of contents

Computational details

Fig. S1 ¹H- and ¹³C-NMR for BQ-Ox in CDCl₃.

Fig. S2 ¹H- and ¹³C-NMR for NQ-Ox in CDCl₃.

Fig. S3 Chromatograms of non-irradiated and irradiated BQ-Ox (A) and NQ-Ox (B) followed by analytical HPLC using a Photodiode Array Detector (wavelength fixed at 252 nm). Irradiations were performed in deaerated MeCN in a multilamp photoreactor emitting at $\lambda_{max} \sim 310$ nm through quartz cells.

Fig. S4 LFP transient absorption spectra for BQ at different times after the laser pulse (1, 2, 10 and 50 μ s). B) Decay traces for BQ (gray) and BQ-Ox (dark blue) at 410 nm. All measurements were performed in deaerated MeCN at λ_{exc} = 266 nm.

Fig. S5 Natural orbitals of the CASSCF active space of the singlet states at the oxetane structure for BQ-Ox.

Fig. S6 Natural orbitals of the CASSCF active space of the triplet states at the oxetane structure for BQ-Ox.

Fig. S7 Natural orbitals of the CASSCF active space of the singlet and triplet states at the diradical structure (³BQ-Ox*) for BQ-Ox.

Fig. S8 Natural orbitals of the CASSCF active space of the singlet and triplet states at the transition state structure (TS) for BQ-Ox.

Fig. S9 Natural orbitals of the CASSCF active space of the singlet and triplet states at the excimer structure (³EXC*) for BQ-Ox.

Fig. S10 Natural orbitals of the CASSCF active space of the singlet and triplet states at the crossing point structure (CP) for BQ-Ox.

Fig. S11 A) LFP transient absorption spectra for NQ at different times after the laser pulse (0.5, 2, 5 and 20 μ s). B) Decay traces for NQ (black) and NQ-Ox (blue) at 370 nm. All measurements were performed in deaerated MeCN at λ_{exc} = 266 nm.

Fig. S12 Degree of photodegradation for NQ (black) and NQ-Ox (blue) upon steady-state irradiation in deaerated MeCN using a multilamp photoreactor emitting at $\lambda_{max} \sim 310$ nm.

Fig. S13 Natural orbitals of the CASSCF active space of the singlet states at the oxetane structure for NQ-Ox.

Fig. S14 Natural orbitals of the CASSCF active space of the triplet states at the oxetane structure for NQ-Ox.

Fig. S15 Natural orbitals of the CASSCF active space of the singlet and triplet states at the diradical structure (${}^{3}NQ-Ox^{*}$) for NQ-Ox.

Fig. S16 Natural orbitals of the CASSCF active space of the singlet states at the crossing point structure (CP) for NQ-Ox.

Fig. S17 Natural orbitals of the CASSCF active space of the triplet states at the crossing point structure (CP) for NQ-Ox.

Fig. S18 Natural orbitals of the CASSCF active space of the singlet states at the transition state structure (TS) for NQ-Ox.

Fig. S19 Natural orbitals of the CASSCF active space of the triplet states at the transition state structure (TS) for NQ-Ox.

Fig. S20 Natural orbitals of the CASSCF active space of the singlet and triplet states at the excimer structure (³EXC*) for NQ-Ox.

Fig. S21 T-shape and parallel conformations of the ³EXC* for BQ-Ox system.

Fig. S22 T-shape and parallel conformations of the ³EXC* for NQ-Ox system.

Table S1 Nature of the states in each relevant geometry for BQ-Ox: energies (E_v^{abs} ; in eV), weight of the main configuration state functions in the CASSCF wavefunction and dipole moment (μ ; in Debye). See shape of the natural orbitals in Figs. S4 to S9.

Table S2 Nature of the states in each relevant geometry for NQ-Ox: energies (E_v^{abs} ; in eV), weight of the main configuration state functions in the CASSCF wavefunction and dipole moment (μ ; in Debye). See shape of the natural orbitals in Figs. S11 to S18.

Table S3 DFT and CASPT2 energies of the T_1 state of both types of excimers of BQ-Ox and NQ-Ox. The energies are relative to their respective T-shape excimers.

Computational details

The calculations of this work were performed by means of Density Functional Theory (DFT) and multiconfigurational quantum chemistry (CASSCF¹ and CASPT2²) methods, using GAUSSIAN 09, revision D.01,³ and MOLCAS 8⁴ software packages, respectively.

Geometry optimizations. The structures of the singlet ground state of the oxetanes (BQ-Ox/NQ-Ox), the triplet state of the diradical (${}^{3}BQ-Ox^{*}/{}^{3}NQ-Ox^{*}$), the triplet state of the exciplex (${}^{3}EXC^{*}$), the triplet transition state (TS) between the diradical and the exciplex and the isolated BQ molecules were optimized using the DFT method with the M06-2X functional, without any symmetry restriction and the standard 6-31++G** basis set.

On the one hand, a series of intermediate geometries between BQ-Ox/NQ-Ox and ³BQ-Ox*/³NQ-Ox* were obtained by scanning the C-C bond length. On the other hand, the intermediate geometries between ³BQ-Ox*/³NQ-Ox*, TS and ³EXC* were determined by means of internal reaction coordinate calculations (IRC) from the TS. All of them were obtained with the DFT method and M06-2X/6-31++G** level of theory.

Excited-state single-point calculations. The ground- and excited-state energies on top of the optimized and scanned geometries were calculated using the state specific (SS)-CASPT2 method, which incorporates dynamic correlation, making use of the state averaged (SA)-CASSCF wave functions. In the case of BQ-Ox system, the active space used in the study was of 14 electrons distributed in 12 orbitals, demanding four singlet and four triplet states in the SA-CASSCF procedure and with the ANO-S-VDZP basis set, as implemented in MOLCAS 8 software package. For NQ-Ox, the active space was 12 electrons distributed in 12 orbitals and, in this case, three singlet and three triplet states were demanded. To ensure accuracy, the ionization-potential electron-affinity parameter⁵ (IPEA) was set at 0.0 au in both systems. To minimize the presence of weakly intruder states, an imaginary level shift⁶ of 0.2 au was applied.

Fig. S1 ¹H- and ¹³C-NMR for BQ-Ox in CDCl₃.

Fig. S2 1 H- and 13 C-NMR for NQ-Ox in CDCl₃.

Fig. S3 Chromatograms of non-irradiated and irradiated BQ-Ox (A) and NQ-Ox (B) followed by analytical HPLC using a Photodiode Array Detector (wavelength fixed at 252 nm). Irradiations were performed in deaerated MeCN in a multilamp photoreactor emitting at $\lambda_{max} \sim 310$ nm through quartz cells.

Fig. S4 LFP transient absorption spectra for BQ at different times after the laser pulse (1, 2, 10 and 50 μ s). B) Decay traces for BQ (gray) and BQ-Ox (dark blue) at 410 nm. All measurements were performed in deaerated MeCN at λ_{exc} = 266 nm.

Fig. S5 Natural orbitals of the CASSCF active space of the singlet states at the oxetane structure for BQ-Ox.

Fig. S6 Natural orbitals of the CASSCF active space of the triplet states at the oxetane structure for BQ-Ox.

Fig. S7 Natural orbitals of the CASSCF active space of the singlet and triplet states at the diradical structure (${}^{3}BQ-Ox^{*}$) for BQ-Ox.

Fig. S8 Natural orbitals of the CASSCF active space of the singlet and triplet states at the transition state structure (TS) for BQ-Ox.

Fig. S9 Natural orbitals of the CASSCF active space of the singlet and triplet states at the excimer structure (³EXC*) for BQ-Ox.

Fig. S10 Natural orbitals of the CASSCF active space of the singlet and triplet states at the crossing point structure (CP) for BQ-Ox.

Fig. S11 A) LFP transient absorption spectra for NQ at different times after the laser pulse (0.5, 2, 5 and 20 μ s). B) Decay traces for NQ (black) and NQ-Ox (blue) at 370 nm. All measurements were performed in deaerated MeCN at λ_{exc} = 266 nm.

Fig. S12 Degree of photodegradation for NQ (black) and NQ-Ox (blue) upon steady-state irradiation in deaerated MeCN using a multilamp photoreactor emitting at $\lambda_{max} \simeq 310$ nm.

Fig. S13 Natural orbitals of the CASSCF active space of the singlet states at the oxetane structure for NQ-Ox.

Fig. S14 Natural orbitals of the CASSCF active space of the triplet states at the oxetane structure for NQ-Ox.

Fig. S15 Natural orbitals of the CASSCF active space of the singlet and triplet states at the diradical structure (³NQ-Ox^{*}) for NQ-Ox.

Fig. S16 Natural orbitals of the CASSCF active space of the singlet states at the crossing point structure (CP) for NQ-Ox.

Fig. S17 Natural orbitals of the CASSCF active space of the triplet states at the crossing point structure (CP) for NQ-Ox.

Fig. S18 Natural orbitals of the CASSCF active space of the singlet states at the transition state structure (TS) for NQ-Ox.

Fig. S19 Natural orbitals of the CASSCF active space of the triplet states at the transition state structure (TS) for NQ-Ox.

Fig. S20 Natural orbitals of the CASSCF active space of the singlet and triplet states at the excimer structure (³EXC*) for NQ-Ox.

Fig. S21 T-shape and parallel conformations of the ³EXC* for BQ-Ox system.

Fig. S22 T-shape and parallel conformations of the ³EXC* for NQ-Ox system.

Geometry	State	Nature	E_v^{abs}	Weight	μ
BQ-Ox	S ₀	$cs (HF)^a$	-2.38	78.7	2.00
	S ₁	$n_{01} \rightarrow \pi_2^*$	0.98	67.6	2.08
³ BQ-Ox*	So	$\sigma_{CC} ightarrow \sigma_{CC}^*$	-1.38	74.7	3.66
	S ₁	$n_{O4} \rightarrow \sigma_{CC}^* / \sigma_{CC} \rightarrow \sigma_{CC}^*$	0.17	81.4	0.97
	T ₁	$\sigma_{CC} ightarrow \sigma_{CC}^*$	-1.39	80.7	3.63
СР	So	$cs (HF)^{a} \sigma_{CC} \rightarrow \sigma_{CC}^{*}$	-0.87	53.3 14.7	1.80
	S ₁	$\sigma_{CC} \rightarrow \sigma_{CC}^{*}$ cs (HF) ^a $\pi_{4} \rightarrow \sigma_{CC}^{*} / \sigma_{CC} \rightarrow \sigma_{CC}^{*}$	-0.80	44.1 17.8 10.5	1.75
	T ₁	$\sigma_{CC} \rightarrow \sigma_{CC}^{*}$ $\pi_{4} \rightarrow \sigma_{CC}^{*} / \sigma_{CC} \rightarrow \sigma_{CC}^{*}$	-0.80	58.8 12.8	3.97
TS	S ₀	$cs (HF)^a$	-1.47	71.2	2.07
	S1	$\sigma_{CC} n_{03} \rightarrow \sigma_{CC}^{*}$ $\pi_{4} \rightarrow \sigma_{CC}^{*} / \sigma_{CC} n_{03} \rightarrow \sigma_{CC}^{*}$	-0.40	58.0 16.6	2.99
	T ₁	$\sigma_{CC} n_{03} \rightarrow \sigma_{CC}^{*}$ $\pi_{4} \rightarrow \sigma_{CC}^{*} / \sigma_{CC} n_{03} \rightarrow \sigma_{CC}^{*}$	-0.53	59.1 15.2	2.97
³ EXC*	S ₀	$cs (HF)^a$	-2.18	70.9	0.91
	S ₁	$\begin{array}{c} n_{O3O4,2} \to \sigma_{CC}^{*} \\ n_{O3O4,1} \to \sigma_{CC}^{*} \\ \pi_{4} \to \sigma_{CC}^{*} / n_{O3O4,2} \to \sigma_{CC}^{*} \end{array}$	-0.32	41.7 17.3 123	2.52
	T ₁	$\begin{array}{c} n_{0304,2} \rightarrow \sigma_{CC}^{*} \\ \pi_{4} \rightarrow \sigma_{CC}^{*}/n_{0304,2} \rightarrow \sigma_{CC}^{*} \end{array}$	-0.53	51.8 13.6	2.60

Table S1 Nature of the states in each relevant geometry for BQ-Ox: energies (E_v^{abs} ; in eV), weight of the main configuration state functions in the CASSCF wavefunction (%) and dipole moment (μ ; in Debye). See shape of the natural orbitals in Figs. S4 to S9.

Geometry	State	Nature	E_v^{abs}	Weight	μ
NQ-Ox	S ₀	cs (HF) ^a	-3.79	80.0	3.28
	S1	$\pi_1 \to \pi_1^*$	0.03	77.0	5.47
³ NQ-Ox*	S ₀	$\sigma_{CC} \rightarrow \sigma_{CC}^*$	-2.32	67.7	3.90
	S ₁	$\sigma_{CC} \rightarrow \sigma_{CC}^* / \pi_5 \rightarrow \sigma_{CC}^* \\ \sigma_{CC} \rightarrow \pi_5^*$	-0.91	38.9 22.4	3.30
	T ₁	$\sigma_{CC} \rightarrow \sigma_{CC}^*$	-2.25	76.1	3.90
СР	So	$(\sigma_{CC} n_0) \to \sigma_{CC}^*$	-1.76	71.1	4.55
	S1	cs (HF) ^a	-1.75	65.3	5.78
	T ₁	$(\sigma_{CC} n_0) \to \sigma_{CC}^*$	-1.69	77.5	4.81
TS	S ₀	cs (HF) ^a	-2.61	75.3	3.16
	S1	$(\sigma_{CC} n_0) \to \sigma_{CC}^*$	-1.34	68.1	4.12
	T ₁	$(n_O \sigma_{CC}) \rightarrow \sigma_{CC}^*$	-1.18	75.2	3.90
³ EXC*	S ₀	cs (HF) ^a	-3.48	73.4	1.95
	S1	$\overline{n_0 \to (\sigma_{CC} \pi_B)^*}$	-1.28	74.0	3.88
	T ₁	$n_0 \to (\sigma_{CC} \pi_B)^*$	-1.40	72.5	3.99

Table S2 Nature of the states in each relevant geometry for NQ-Ox: energies (E_v^{abs} ; in eV), weight of the main configuration state functions in the CASSCF wavefunction (%) and dipole moment (μ ; in Debye). See shape of the natural orbitals in Figs. S11 to S18.

Table S3 DFT and CASPT2 energies (in eV) of the T_1 state of both types of excimers of BQ-Ox and NQ-Ox. The energies are relative to their respective T-shape excimers.

		BQ-ox	NQ-ox
r.	T-shape	0.00	0.00
EDFT,T1	Parallel	-0.19	-0.28
F	T-shape	0.00	0.00
ECASPT2,T1	Parallel	-0.08	-1.19

REFERENCES

- (1) Siegbahn, P. E. M.; Almlöf, J.; Heiberg, A.; Roos, B. O. The Complete Active Space SCF (CASSCF) Method in a Newton–Raphson Formulation with Application to the HNO Molecule. *J. Chem. Phys.* **1981**, *74*, 2384-2396.
- (2) Andersson, K.; Malmqvist, P. Å.; Roos, B. O. Second-Order Perturbation Theory with a Complete Active Space Self-Consistent Field Reference Function. *J. Chem. Phys.* **1992**, *96*, 1218-1226.
- (3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT 2009.
- (4) Aquilante, F.; Autschbach, J.; Carlson, R. K.; Chibotaru, L. F.; Delcey, M. G.; De Vico, L.; Fdez.-Galván, I.; Ferré, N.; Frutos, L. M.; Gagliardi, L. et al. Molcas 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table. J. Comput. Chem. 2016, 37, 506-541.
- (5) Ghigo, G.; Roos, B. O.; Malmqvist, P. Å. A Modified Definition of the Zeroth-Order Hamiltonian in Multiconfigurational Perturbation Theory (CASPT2). *Chem. Phys. Lett.* 2004, 396, 142-149.
- (6) Forsberg, N.; Malmqvist, P. Å. Multiconfiguration Perturbation Theory with Imaginary Level Shift. *Chem. Phys. Lett.* **1997**, *274*, 196-204.