Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supplementary information for :

Metal-ligand bond in group-11 complexes and nanoclusters

Maryam Sabooni Asre Hazer,^a Sami Malola,^b and Hannu Häkkinen^{*a,b,c}

^a Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland

^b Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland

^c Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario, K7L 3N6, Canada

*hannu.j.hakkinen@jyu.fi

Electronic Supporting Information:

Table S1. Calculated bond angles for M-S-C in M-SR (R= SCH₃ and SC₈H₉) using PBE and BEEF-vdW.

M-SR	PBE	BEEF-vdW
Cu-SCH ₃	105.5	105.3
Ag-SCH ₃	105.5	105.2
Au-SCH ₃	104.0	104.8
Cu-SC ₈ H ₉	105.5	104.4
Ag-SC ₈ H ₉	104.51	104.6
Au-SC ₈ H ₉	102.48	102.2

NA I		PBE	BEEF-vdW		
	ΔE (eV)	Bond length(Å)	ΔE (eV)	Bond length (Å)	
Cu-SCH₃	-1.22	2.09	-1.08	2.12	
Ag-SCH₃	-0.62	2.31	-0.55	2.36	
Au-SCH₃	-0.97	2.25	-0.776	2.29	
Cu-SC ₈ H ₉	-1.28	2.09	-1.09	2.12	
Ag-SC ₈ H ₉	-0.69	2.31	-0.55	2.37	
Au-SC ₈ H ₉	-1.02	2.25	-0.786	2.29	
Cu-PPh₃	-1.07	2.22	-0.75	2.29	
Ag-PPh₃	-0.59	2.51	-0.40	2.65	
Au-PPh₃	-1.35	2.35	-0.97	2.41	
Cu-NHC ^{Me}	-1.54	1.92	-1.14	1.96	
Ag-NHC ^{Me}	-0.90	2.18	-0.58	2.26	
Au-NHC ^{Me}	-1.63	2.08	-1.18	2.13	
Cu-NHC ^{Et}	-1.54	1.91	-1.16	1.96	
Ag-NHC ^{Et}	-0.90	2.17	-0.59	2.27	
Au-NHC ^{Et}	-1.65	2.08	-1.201	2.15	
Cu-NHC ^{iPr}	-1.55	1.92	-1.18	1.98	
Ag-NHC ^{iPr}	-0.90	2.18	-0.63	2.28	
Au-NHC ^{iPr}	-1.64	2.08	-1.216	2.16	
Cu-NHC ^{Bn}	-1.60	1.92	-1.2	1.96	
Ag-NHC ^{Bn}	-0.96	2.17	-0.61	2.27	
Au-NHC ^{Bn}	-1.69	2.09	-1.23	2.39	
Cu-CCMe	-0.67	1.79	-0.48	1.81	
Ag-CCMe	0.06	1.98	0.20	2.03	
Au-CCMe	-0.37	1.91	-0.11	1.94	
Cu-CCPh	-0.71	1.79	-0.52	1.82	
Ag-CCPh	0.02	1.99	0.16	2.03	
Au-CCPh	-0.40	1.91	-0.12	1.94	

Table S2. Calculated bond lengths (Å) of M-L complexes and binding energy (eV) using PBE and BEEF-vdW.

Figure S1. Projected density of states for (a) Cu-PPh₃ (b) Ag-PPh₃ and (c) Au-PPh₃.

Figure S2. Projected density of states for (a) Cu-NHC^{Me} (b) Aq-NHC^{Me} and (c) Au- NHC^{Me}.

The numbers 2 and 3 in the Figures S3 and 4 refer to HOMO-2 and HOMO-3.

M-L	M Total Q (e) N=1	S Total Q (e) N=1	C,H Total Q (e) N= 4	
Cu-SCH₃	0.27	-0.27	-0.001	
Ag-SCH₃	0.26	-0.22	-0.04	
Au-SCH₃	0.03	-0.0006	-0.034	
	M Total Q (e) N=1	S Total Q (e) N=1	C,H Total Q (e) N= 17	
Cu-SC ₈ H ₉	0.27	-0.30	0.03	
Ag-SC ₈ H ₉	0.26	-0.27	0.01	
Au-SC8H ₉	0.03	-0.08	0.05	
	M Total Q (e) N=1	P Total Q (e) N=1	C,H Total Q (e) N= 33	
Cu-PPh₃	-0.16	1.55	-1.39	
Ag-PPh₃	-0.19	1.54	-1.35	
Au-PPh₃	-0.37	1.67	-1.31	
	M Total Q (e) N=1	C Total Q (e) N=1	C,H, N Total Q (e) N= 20	
Cu-NHC ^{Me}	-0.11	0.67	-0.57	
Ag-NHC ^{Me}	-0.14	0.73	-0.59	
Au-NHC ^{Me}	-0.27	0.82	-0.54	
	M Total Q (e) N=1	C Total Q (e) N=1	C,H, N Total Q (e) N= 26	
Cu-NHC ^{Et}	-0.12	0.71	-0.59	
Ag-NHC ^{Et}	-0.16	0.69	-0.53	
Au-NHC ^{Et}	-0.27	0.77	-0.50	
	M Total Q (e) N=1	C Total Q (e) N=1	C,H, N Total Q (e) N= 32	
Cu-NHC ^{iPr}	-0.12	0.69	-0.57	

Table S3. Bader charges for M-L complexes optimized with PBE.

Ag-NHC ^{iPr}	HC ^{iPr} -0.16 0.75		-0.59
Au-NHC ^{iPr}	-0.29	0.84	-0.55
	M Total Q (e) N=1	C Total Q (e) N=1	C,H, N Total Q (e) N= 40
Cu-NHC ^{Bn}	-0.08	0.70	-0.62
Ag-NHC ^{Bn}	-0.14	0.74	-0.60
Au-NHC ^{Bn}	-0.27	0.84	-0.57
	M Total Q (e) N=1	C Total Q (e) N=1	C,H Total Q (e) N= 5
Cu-CCMe	0.38	-0.11	-0.27
Ag-CCMe	0.37	-0.35	-0.016
Au-CCMe	0.16	0.09	-0.25
	M Total Q (e) N=1	C Total Q (e) N=1	C,H Total Q (e) N= 12
Cu-CCPh	0.40	0.09	-0.49
Ag-CCPh	0.39	-0.42	0.03
Au-CCPh	0.18	0.09	-0.27

Table S4. Calculated bond lengths (Å) of $M-L_1$ and $M-L_2$ in the L_1-M-L_2 complexes and using PBE.

L ₁ -M-L ₂	Bond length (A)			
	M-L ₁	M-L ₂		
NHC ^{₿n} -Cu-CCPh	1.89	1.84		
NHC ^{Bn} -Ag-CCPh	2.07	2.00		
NHC ^{₿n} -Au-CCPh	2.04	1.98		
PPh₃-Cu-CCPh	2.18	1.84		
PPh₃-Ag-CCPh	2.36	2.02		
PPh₃-Au-CCPh	2.31	1.99		

Table S5. Bader charges of L_1 -M- L_2 complexes. Labelling: L_x : NHC/PPh₃ groups without the terminal atom A₁ (C or P) binding the metal atom M, A₁: terminal atom of NHC/PPh₃ binding the metal atom, M: metal atom (Cu,Ag,Au) in the center, A₂: terminal atom C of the alkynyl group binding the metal atom M, L_y : alkynyl group without the terminal atom A₂. Charges are given in |e| units.

L ₁ -M-L ₂ Structure	L _x	L _x - A 1 - M	М	M – A ₂ – L _y	Ly
NHC ^{Bn} -Cu-CCPh	-0.51	+0.71	+0.37	-0.13	-0.43
NHC ^{Bn} -Ag-CCPh	-0.46	+0.72	+0.27	-0.45	-0.08
NHC ^{Bn} -Au-CCPh	-0.47	+0.78	+0.13	+0.05	-0.48
PPh₃-Cu-CCPh	-1.15	+1.42	+0.26	-0.27	-0.26
PPh₃-Ag-CCPh	-0.93	+1.18	+0.30	-0.46	-0.09
PPh₃-Au-CCPh	-1.13	+1.58	+0.01	-0.60	+0.14

	PBE		BEEF-vdW		
	M(c)-M(p)	M-Br	M(c)-M(p)	M-Br	
[Cu ₁₃ (PPh ₃) ₆ Br ₆] ⁻	1.88	2.31	2.54	2.35	
$[Ag_{13}(PPh_3)_6Br_6]^-$	2.81	2.53	2.88	2.58	
[Au ₁₃ (PPh ₃) ₆ Br ₆] ⁻	2.86	2.51	2.90	2.55	
[Cu ₁₃ (NHC ^{Me}) ₆ Br ₆] ⁻	1.87	2.33	2.53	2.36	
[Ag ₁₃ (NHC ^{Me}) ₆ Br ₆] ⁻	2.80	2.56	2.86	2.60	
[Au ₁₃ (NHC ^{Me}) ₆ Br ₆] ⁻	2.82	2.51	2.87	2.56	
[Cu ₁₃ (NHC ^{Et}) ₆ Br ₆] ⁻	2.49	2.33	-	-	
[Ag ₁₃ (NHC ^{Et}) ₆ Br ₆] [−]	2.80	2.54	-	-	
[Au ₁₃ (NHC ^{Et}) ₆ Br ₆] ⁻	2.83	2.51	-	-	
[Cu ₁₃ (NHC ^{iPr}) ₆ Br ₆] ⁻	2.51	2.33	-	-	
$[Ag_{13}(NHC^{iPr})_6Br_6]^{-1}$	2.81	2.55	-	-	
[Au ₁₃ (NHC ^{iPr}) ₆ Br ₆] ⁻	2.82	2.52	-	-	
[Cu ₁₃ (NHC ^{Bn}) ₆ Br ₆] ⁻	2.50	2.32	-	-	
$[Ag_{13}(NHC^{Bn})_6Br_6]^-$	2.80	2.54	-	-	
$[Au_{13}(NHC^{Bn})_6Br_6]^-$	2.84	2.51	-	-	

Table S6. Calculated average bond lengths (Å) for M(center)-M(peripheral) and M-Br in $[TM_{13}L_6Br_6]^-$ clusters using PBE and BEEF-vdW.

Figure S5. Projected density of states for (a) $[M_{13}(PPh_3)_6Br_6]^-$ and (b) $[M_{13}(NHC^{Me})_6Br_6]^-$ (M= Cu, Ag, Au).

	M∟ Total Q (e) N=6	M _{center} Total Q (e) N=1	M _{Br} Total Q (e) N=6	P Total Q (e) N=6	C,H Total Q (e) N= 198	Br Total Q (e) N=6
[Cu₁₃(PPh₃) ₆ Br ₆] ⁻	0.77	-0.13	0.96	8.39	-7.61	-3.38
[Ag ₁₃ (PPh ₃) ₆ Br ₆] ⁻	0.53	-0.10	0.84	8.82	-7.64	-3.46
[Au ₁₃ (PPh ₃) ₆ Br ₆] ⁻	-0.28	-0.15	0.23	9.52	-7.46	-2.87
	M∟ Total Q (e) N=6	M _{center} Total Q (e) N=1	M _{Br} Total Q (e) N=6	C Total Q (e) N=6	C,H, N Total Q (e) N= 120	Br Total Q (e) N=6
[Cu ₁₃ (NHC ^{Me}) ₆ Br ₆] ⁻	1.18	-0.18	0.94	4.24	-3.55	-3.62
[Ag ₁₃ (NHC ^{Me}) ₆ Br ₆] ⁻	0.82	-0.12	0.82	4.64	-3.46	-3.71
[Auu ₁₃ (NHC ^{Me}) ₆ Br ₆] ⁻	0.37	-0.20	0.24	4.84	-3.18	-3.06
	M∟ Total Q (e) N=6	M _{center} Total Q (e) N=1	M _{Br} Total Q (e) N=6	C Total Q (e) N=6	C,H, N Total Q (e) N= 156	Br Total Q (e) N=6
[Cu ₁₃ (NHC ^{Et}) ₆ Br ₆]⁻	1.18	-0.18	0.92	4.35	-3.75	-3.53
[Ag ₁₃ (NHC ^{Et}) ₆ Br ₆]⁻	0.83	-0.13	0.81	4.62	-3.54	-3.60
[Au ₁₃ (NHC ^{Et}) ₆ Br ₆] ⁻	0.34	-0.21	0.23	4.87	-3.26	-2.98
	M∟ Total Q (e) N=6	M _{center} Total Q (e) N=1	M _{Br} Total Q (e) N=6	C Total Q (e) N=6	C,H, N Total Q (e) N= 192	Br Total Q (e) N=6
[Cu ₁₃ (NHC ^{iPr}) ₆ Br ₆] ⁻	1.22	-0.16	0.86	4.04	-3.47	-3.49
[Ag ₁₃ (NHC ^{iPr}) ₆ Br ₆] ⁻	0.83	-0.12	0.82	4.64	-3.58	-3.58
[Au ₁₃ (NHC ^{iPr}) ₆ Br ₆] ⁻	0.34	-0.19	0.23	4.96	-3.36	-2.97
	M∟ Total Q (e) N=6	M _{center} Total Q (e) N=1	M _{Br} Total Q (e) N=6	C Total Q (e) N=6	C,H, N Total Q (e) N= 240	Br Total Q (e) N=6
[Cu ₁₃ (NHC ^{Bn}) ₆ Br ₆] ⁻	1.18	-0.18	0.92	4.14	-3.58	-3.49
$[Ag_{13}(NHC^{Bn})_6Br_6]$	0.83	-0.12	0.80	4.60	-3.56	-3.55
$[Au_{13}(NHC^{Bn})_6Br_6]^-$	0.34	-0.20	0.23	4.84	-3.27	-2.94

Table S7. Bader charges for $[M_{13}L_6Br_6]^-$ clusters optimized with PBE (M_L is refering to the coinage metals bonded to ligand groups and M_{Br} is the coinage metals bonded to Br atoms).