Electronic Supplementary Information

Title: Enhancing adsorption-photocatalytic efficiency of BiOBr for Congo red degradation by tuning surface charge and bandgap *via* Y³⁺-I[−] co-doping strategy

Authors and affiliations:

Dongsheng Chen^a, Keqian Gong^b, Xiangyang Xu^{a, c, *}, Chenyu Huang^a, Pengtao Lei^a

a School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

b. State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China

c Hunan Key Laboratory of Mineral Materials and Applications, Changsha 410083, China

Corresponding author: Xiangyang Xu (E-mail: xuxiangyang@csu.edu.cn)

This *Supplementary Material* file contains 12 figures showing SEM, XRD, TEM, FTIR, Adsorption-photodegradation and calculation results. Meanwhile, 11 relevant data tables were supplied.

Figure captions:

- Fig. S1. Wide-field SEM images of BiOBr (a), $Bi_{0.8}Y_{0.20}OBr$ (b), $BiOBr_{0.97}I_{0.03}$ (c) and $Bi_{0.8}Y_{0.20}OBr_{0.97}I_{0.03}$ (d).
- Fig. S2. XRD patterns of $Bi_{1-x}Y_xOBr$ (a), $BiOBr_{1-y}I_y$ (b) and $Bi_{0.8}Y_{0.2}OBr_{1-y}I_y$ (c).
- Fig. S3. TEM visualization (top side view on flake surface) of pristine BiOBr (a) and $Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$ (b).
- Fig. S4. SAED patterns of pristine BiOBr (a) and Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03} (b).
- Fig. S5. HRTEM visualization (sectional profile) of pristine BiOBr (a) and Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03} (b).
- **Fig. S6.** HRTEM and localized magnified fast Fourier transform images of pristine BiOBr (a, a1 and a2) showing orderly array and Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03} (b, b1 and b2) displaying a defect-rich structure.
- **Fig. S7.** COHP images of Bi_{0.8}Y_{0.2}OBr (a), BiOBr_{0.97}I_{0.03} (b) and Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03} (c). The interactions between those atoms are described by the product of their corresponding Hamiltonian matrix element and the density of states matrix.
- Fig. S8. FTIR spectra for bands over 4000-2700 cm⁻¹(a) and 1800-400 cm⁻¹ (b) of BiOBr, $Bi_{0.8}Y_{0.2}OBr, BiOBr_{0.97}I_{0.03}, Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$ and PVP K30.
- Fig. S9. FTIR spectra of CR.
- **Fig. S10.** Adsorption-photodegradation curves and pseudo-first-order kinetic plots of Bi_{0.8}Y_{0.2}OBr₁₋ _yI_y (initial CR solution: 100 mL, pH: 6, and catalyst dosage: 25 mg).
- Fig. S11. Cycling performance of CR photodegradation for Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}.
- Fig. S12. XRD patterns of the fresh and cycled $Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$.

Table captions:

- **Table S1.** BET special surface area, pore volume and modal pore size of pure BiOBr, Bi_{0.8}Y_{0.2}OBr,
BiOBr_{0.97}I_{0.03} and Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}.
- Table S2. Lattice constants of pristine and doped BiOBr samples based on Rietveld method.
- Table S3 Bond length of pristine and doped BiOBr structures.
- Table S4 Lattice constant and angle of pristine and doped BiOBr structures.
- Table S5. Assignment of main FTIR peaks of PVP K30, pristine and doped BiOBr powders.
- Table S6. Assignment of main FTIR peaks of CR.
- **Table S7.** Calculated E_{fb} , E_{CB} and E_{VB} values of BiOBr samples using Mott-Schottky equation.
- **Table S8.** DFT calculated band structural results of pure and doped BiOBr flakes.
- **Table S9.** Adsorption efficiency, photodegradation efficiency, first-order kinetic parameters for different samples (initial CR concentration: 50 mg L⁻¹, CR solution: 50 mL, pH: 6, and catalyst dosage: 25 mg).
- **Table S10.** TOC removal performance of $Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$ for the degradation of CR.
- **Table S11.** Adsorption efficiency, photodegradation efficiency, first-order kinetic parameters for different samples (initial CR concentration: 100 mg L⁻¹, CR solution: 50 mL, pH: 6, and catalyst dosage: 25 mg).

Fig. S1. Wide-field SEM images of BiOBr (a), $Bi_{0.8}Y_{0.2}OBr$ (b), $BiOBr_{0.97}I_{0.03}$ (c) and $Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$ (d).

Fig. S2. XRD patterns of $Bi_{1-x}Y_xOBr$ (a), $BiOBr_{1-y}I_y$ (b) and $Bi_{0.8}Y_{0.2}OBr_{1-y}I_y$ (c).

Fig. S3. TEM visualization (top side view on flake surface) of pristine BiOBr (a) and $Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$ (b).

Fig. S4. SAED patterns of pristine BiOBr (a) and $Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$ (b).

Fig. S5. HRTEM visualization (sectional profile) of pristine BiOBr (a) and $Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$ (b).

Fig. S6. HRTEM and localized magnified fast Fourier transform images of pristine BiOBr (a, a1 and a2) showing orderly array and Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03} (b, b1 and b2) displaying a defect-rich structure.

Fig. S7. COHP images of Bi_{0.8}Y_{0.2}OBr (a), BiOBr_{0.97}I_{0.03} (b) and Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03} (c). The interactions between those atoms are described by the product of their corresponding Hamiltonian matrix element and the density of states matrix.

Fig. S8. FTIR spectra for bands over 4000-2700 cm⁻¹(a) and 1800-400 cm⁻¹ (b) of BiOBr, $Bi_{0.8}Y_{0.2}OBr, BiOBr_{0.97}I_{0.03}, Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$ and PVP K30.

Fig. S9. FTIR spectra of CR.

Fig. S10. Cycling performance of CR photodegradation for $Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$.

Fig. S11. XRD patterns of the fresh and cycled $Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$.

Fig. S12. Adsorption-photodegradation curves and pseudo-first-order kinetic plots of Bi_{0.8}Y_{0.2}OBr_{1-y}I_y (initial CR concentration: 100 mg L⁻¹, solution volume: 50 mL, pH: 6, and catalyst dosage: 25 mg).

Table S1 BET special surface area, pore volume and modal pore size of pure BiOBr, $Bi_{0.8}Y_{0.2}OBr$, $BiOBr_{0.97}I_{0.03}$ and $Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$.

Samples	S_{BET} (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Modal pore diameter (nm)
BiOBr	32.7069	0.242811	29.6954
Bi _{0.8} Y _{0.2} OBr	33.5234	0.265345	30.5459
BiOBr _{0.97} I _{0.03}	33.9161	0.228927	25.9945
Bi _{0.8} Y _{0.2} OBr _{0.97} I _{0.03}	30.0059	0.196479	26.1920

Table S2 Lattice	constants of pris	tine and doped	d BiOBr sample	es based on l	Rietveld method.
I upic Da Lattice	constants of pris	ine una aopec	a Dio Di Sumpi		

Lattice constant (Å)	a=b	С
BiOBr	3.91985	8.09339
Bi _{0.95} Y _{0.05} OBr	3.92506	8.11091
Bi _{0.9} Y _{0.1} OBr	3.92444	8.1064
Bi _{0.85} Y _{0.15} OBr	3.92369	8.0982
Bi _{0.8} Y _{0.2} OBr	3.92282	8.09552
Bi _{0.75} Y _{0.25} OBr	3.92187	8.09011
Bi _{0.7} Y _{0.3} OBr	3.92095	8.08639
BiOBr _{0.99} I _{0.01}	3.92052	8.12369
BiOBr _{0.98} I _{0.02}	3.92387	8.12452
BiOBr _{0.97} I _{0.03}	3.92429	8.1267
BiOBr _{0.96} I _{0.04}	3.9257	8.1311
BiOBr _{0.95} I _{0.05}	3.92765	8.13359
BiOBr _{0.9} I _{0.1}	3.92836	8.20445
BiOBr _{0.8} I _{0.2}	3.92909	8.41192
Bi _{0.8} Y _{0.2} OBr _{0.99} I _{0.01}	3.927	8.1151
Bi _{0.8} Y _{0.2} OBr _{0.98} I _{0.02}	3.92911	8.12311
Bi _{0.8} Y _{0.2} OBr _{0.97} I _{0.03}	3.93012	8.12843
Bi _{0.8} Y _{0.2} OBr _{0.96} I _{0.04}	3.93249	8.13555
Bi _{0.8} Y _{0.2} OBr _{0.95} I _{0.05}	3.93402	8.14834
Bi _{0.8} Y _{0.2} OBr _{0.9} I _{0.1}	3.93255	8.19480
$Bi_{0.8}Y_{0.2}OBr_{0.8}I_{0.2}$	3.92753	8.23199

 Table S3 Bond length of pristine and doped BiOBr structures.

Sampla	Bond length (Å)						
Sample	Bi–O	Bi–Br	Y-O	Y–Br	Bi–I		
BiOBr	2.347	3.220	/	/	/		
Bi _{0.8} Y _{0.2} OBr	2.316	3.306	2.291	3.118	/		
BiOBr _{0.97} I _{0.03}	2.344	3.241	/	/	3.380		
$Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$	2.342	3.255	2.305	3.092	3.369		

Sample	Lattice constant (Å)			Angle (°)		
Sample	а	b	С	α	eta	γ
BiOBr	7.89672	7.89672	9.05605	90.00	90.00	90.00
Bi _{0.8} Y _{0.2} OBr	7.89788	7.86302	8.90773	90.00	90.00	90.00
$BiOBr_{0.97}I_{0.03}$	7.90587	7.90375	8.96267	90.00	90.00	90.00
${\rm Bi}_{0.8}{\rm Y}_{0.2}{\rm OBr}_{0.97}{\rm I}_{0.03}$	7.88784	7.88619	8.96776	90.02	89.99	90.01

 Table S4 Lattice constant and angle of pristine and doped BiOBr structures.

Peak center			Abso	rption mode	
/cm ⁻¹	PVP	Raw BiOBr	Bi _{0.8} Y _{0.2} OBr	BiOBr _{0.97} I _{0.03}	$Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$
3700-3000			C=0,	Overtone; $v_{\text{O-H}}$	
3427	C=O, Overtone				
2951	$v_{\rm as -CH2}$			$v_{as - CH_2}$	
2922	$v_{ m s}$ –CH2			$v_{\rm s}$ –CH ²	
2886	u –CH				
2854				ν_{-CH}	
1652	ν _{C=O} , ν _{C-N}				
1658-1650			$v_{C=C}$, v _{C-N} , δ _{H-O-H}	
1494	$v_{ ext{C-N}}$			v _{C-N}	
1461	δ _CH2			δ _CH2	
1422	δ _CH2	δ _CH2			
1372	γ –ch			γ –сн	
1317					
1280	ω $_{-\mathrm{CH}^2}$. v $_{\mathrm{C-N}}$	ω -CH2 . V C-N			
1238					
1169	au –CH2				
1087			Bi-OH		
1060					-О-Н…О=С
1041			-O-H…O=C		
1018	ho –CH2				
884				Bi-O	
845	C–C, ring				
733	C–C, chain	C–C, chain			
647	δ _{N-C=O}			δ _{N-C=O}	
506				Bi-O	

Table S5 Assignment of main FTIR peaks of PVP K30, pristine and doped BiOBr powders.

Peak center /cm ⁻¹	Absorption mode
3466	N–H stretching
3076	C–H stretching
1582	-N=N- stretching
1499	C–C stretching
1446	C=C stretching, aromatic
1349	C–N bending
	C-N stretching (Alkyl),
1223, 1176, 1057	$-SO_3^-$ stretching,
	CH in-plane deformation
832	C–C, ring
749	CH wagging, ring deformation
	$-SO_3^-$ bending,
695, 661, 597	N-H out-of-plane deformation,
	C-H (ring) wagging
646	C–C twisting

 Table S6 Assignment of main FTIR peaks of CR.

Table S7 Calculated E_{fb} , E_{CB} and E_{VB} values of BiOBr samples using Mott-Schottky equation

Samples	E_g (eV)	<i>x</i> -axis intercept	E _{fb} V vs Ag/AgCl	$E_{CB}(\mathrm{eV})$	E_{VB} (eV)
BiOBr	2.73	-0.13	-0.16	0.04	2.77
Bi _{0.8} Y _{0.2} OBr	2.78	-0.71	-0.74	-0.54	2.24
BiOBr _{0.97} I _{0.03}	2.30	-0.28	-0.31	-0.11	2.19
Bi _{0.8} Y _{0.2} OBr _{0.97} I _{0.03}	2.38	-0.55	-0.58	-0.38	2.0

Sample	DFT						
Sample	Fermi Energy	Band gap	W_{VBM}	W _{CBM}			
BiOBr	2.74	2.32	2.30	-0.0163			
Bi _{0.8} Y _{0.2} OBr	2.75	2.41	2.40	-0.0192			
BiOBr _{0.97} I _{0.03}	3.005	2.25	2.219	-0.0285			
Bi _{0.8} Y _{0.2} OBr _{0.97} I _{0.03}	3.712	2.29	2.281	-0.0084			

 Table S8. DFT calculated band structural results of pure and doped BiOBr flakes.

Samples	Adsorption efficiency (%)	Adsorption+ Photodegradation efficiency (%)	k (min ⁻¹)	<i>R</i> ²
BiOBr	10.60	46.51	0.00637	0.99882
$\mathrm{Bi}_{0.95}\mathrm{Y}_{0.05}\mathrm{OBr}$	20.40	82.55	0.01945	0.99744
$\mathrm{Bi}_{0.9}\mathrm{Y}_{0.1}\mathrm{OBr}$	28.52	86.91	0.02209	0.94075
$\mathrm{Bi}_{0.85}\mathrm{Y}_{0.15}\mathrm{OBr}$	25.64	86.98	0.02246	0.98043
Bi _{0.8} Y _{0.2} OBr	31.21	90.87	0.02444	0.91122
$\mathrm{Bi}_{0.75}\mathrm{Y}_{0.25}\mathrm{OBr}$	26.04	86.11	0.02117	0.98468
Bi _{0.7} Y _{0.3} OBr	30.40	89.66	0.02374	0.92754
BiOBr _{0.99} I _{0.01}	16.91	71.21	0.01329	0.99926
BiOBr _{0.98} I _{0.02}	14.56	71.48	0.01373	0.99823
BiOBr _{0.97} I _{0.03}	15.17	76.64	0.0162	0.999
BiOBr _{0.96} I _{0.04}	14.77	67.72	0.01217	0.99966
BiOBr _{0.95} I _{0.05}	14.56	75.44	0.01568	0.99883
BiOBr _{0.9} I _{0.1}	16.11	80.00	0.01817	0.99658
$Bi_{0.8}Y_{0.2}OBr_{0.99}I_{0.01}$	28.99	84.77	0.02005	0.99967
$Bi_{0.8}Y_{0.2}OBr_{0.98}I_{0.02}$	57.65	90.47	0.01997	0.99295
$Bi_{0.8}Y_{0.2}OBr_{0.97}I_{0.03}$	75.71	98.19	0.03653	0.98115
$Bi_{0.8}Y_{0.2}OBr_{0.96}I_{0.04}$	75.77	97.85	0.03497	0.99499
$Bi_{0.8}Y_{0.2}OBr_{0.95}I_{0.05}$	65.44	97.11	0.03629	0.99603
$Bi_{0.8}Y_{0.2}OBr_{0.9}I_{0.1}$	82.01	97.85	0.03019	0.97519

Table S9. Adsorption efficiency, photodegradation efficiency, first-order kinetic parameters for different samples (initial CR concentration: 50 mg L⁻¹, CR solution: 50 mL, pH: 6, and catalyst dosage: 25 mg).

Table S10. TOC removal performance of ${\rm Bi}_{0.8}{\rm Y}_{0.2}{\rm OBr}_{0.97}I_{0.03}$ for the degradation of CR

TOC of initial CR solution $(mg L^{-1})$	TOC of CR solution after 80 min degradation (mg L ⁻¹)	TOC removal efficiency (%)
11.07	5.40	51.22

Table S11. Adsorption efficiency, photodegradation efficiency, first-order kinetic parameters for different samples (initial CR concentration: 100 mg L⁻¹, CR solution: 50 mL, pH: 6, and catalyst dosage: 25 mg).

Samples	Adsorption efficiency (%)	Adsorption+ Photodegradation efficiency (%)	<i>k</i> (min ⁻¹)	R^2
Bi _{0.8} Y _{0.2} OBr	14.28	62.24	0.01011	0.9997
Bi _{0.8} Y _{0.2} OBr _{0.99} I _{0.01}	15.45	54.28	0.0077	0.99973
Bi _{0.8} Y _{0.2} OBr _{0.98} I _{0.02}	26.97	84.38	0.01978	0.99752
Bi _{0.8} Y _{0.2} OBr _{0.97} I _{0.03}	37.07	92.62	0.0278	0.99472
Bi _{0.8} Y _{0.2} OBr _{0.96} I _{0.04}	38.72	91.41	0.02582	0.99591
Bi _{0.8} Y _{0.2} OBr _{0.95} I _{0.05}	35.07	88.38	0.02237	0.99415
$Bi_{0.8}Y_{0.2}OBr_{0.9}I_{0.1}$	49.31	92.07	0.02494	0.9752