Supporting information file

Density Functional Theory-Based Modeling of Half Metallic $g-C_3N_4/CoN_4$ Heterojunction for Photocatalytic Water Splitting Reaction

Dhilshada. V. N^a, Aiswarya Chandran^a, Sabyasachi Sen^b, Mausumi Chattopadhyaya^a*

^aDepartment of Chemistry, National Institute of Technology, Calicut, Calicut Mukkam Road, Kattangal, Kerala 673601, India

^bDepartment of Physics, Shyampur Siddheswari Mahavidyalaya, Ajodhya, Shyampur, Howrah, West Bengal 711312, India

List of contents:

- 1. Table S1. Calculated energies of different magnetic states of CoN₄ bulk
- 2. Table S2. Calculated energies of the systems and surface energies (γ) of slabs
- 3. Table S3. Calculated lattice mismatch (δ) of different structures
- 4. Table S4. Calculated energies of different configurations of g-C₃N₄/CoN₄ system
- 5. Table S5. Band gaps of CoN₄ bulk and g-C₃N₄ using different methods
- 6. Computational methodology for calculating the band gap in presence of solvent
- 7. Input file for optimization of $g-C_3N_4$
- 8. Input file for the band structure calculation of $g-C_3N_4$
- 9. Input file for the PDOS calculation of $g-C_3N_4$
- 10. Input file for the work function calculation of g-C₃N₄
- 11. Input file for the optical property calculation of g-C₃N₄

Table S1. Calculated energies of different magnetic states of CoN4 bulk

System	Nonmagnetic state	Ferromagnetic state	Anti-ferromagnetic state
Energy(eV)	0	-2.0	-1.5

Table S2. Calculated energies of the systems and surface energies (γ) of slabs.

System	g-C ₃ N ₄ ($2 \times 2 \times 1$)	CoN ₄	bulk		CoN ₄ (111) slab	g-C ₃ N ₄ /CoN ₄
					$(\sqrt{3} \times \sqrt{3} \times 1)$	
Energy(Ry)	-951.88	-2987	.11		-2240.15	-3192.38
Surface energy(J/m ²)		(100)	(110)	(111)		
		0.36	0.37	0.11		

Table S3. Calculated lattice mismatch (δ) of different structures

System	Lattice parameter of g- C ₃ N ₄ system (Å)	Lattice Parameter of CoN4 system (Å)	Lattice mismatch (%)
$1 \times 1 \times 1$ g-C ₃ N ₄ / $1 \times 1 \times 1$ CoN4(111)	7.2	8.06	10
$1 \times 1 \times 1$ g-C ₃ N ₄ / $2 \times 2 \times 1$ CoN4(111)	7.2	16.12	55
2×2×1 g-C ₃ N ₄ / 1×1×1 CoN4(111)	14.4	8.06	44
2×2×1 g-C ₃ N ₄ / 2×2×1 CoN4(111)	14.4	16.12	10
$\frac{\sqrt{2} \times \sqrt{2} \times 1}{1 \times 1 \times 1} \frac{\text{g-C}_3 \text{N}_4}{\text{CoN4(111)}} $	10.08	8.06	20
1×1×1	7.2	11.3	36

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$ \begin{array}{c c} \sqrt{2} \times \sqrt{2} \times 1 & g \text{-} C_3 N_4 & / \\ \sqrt{2} \times \sqrt{2} \times 1 & \\ \text{CoN4(111)} \end{array} $	10.08	11.3	10
$\frac{\sqrt{3} \times \sqrt{3} \times 1}{1 \times 1 \times 1} \frac{\text{g-C}_3 \text{N}_4}{\text{CoN4(111)}} $	12.45	8.06	35
$\frac{1\times1\times1}{\sqrt{3}\times1\text{CoN4}(111)} \neq \frac{1\times1\times1}{\sqrt{3}\times1\text{CoN4}(111)}$	7.2	13.94	48
$ \sqrt{3} \times \sqrt{3} \times 1 \qquad \text{g-C}_3\text{N}_4 \\ /\sqrt{2} \times \sqrt{2} \times 1 \\ \text{CoN4(111)} $	12.45	11.3	9
	10.08	13.94	27
$\frac{2 \times 2 \times 1}{\sqrt{3} \times 1} \frac{\text{g-C}_3\text{N}_4/\sqrt{3} \times 1}{\text{CoN4(111)}}$	14.4	13.94	3#
$\frac{\sqrt{3} \times \sqrt{3} \times 1}{/2 \times 2 \times 1} \frac{\text{g-C}_3\text{N}_4}{\text{CoN4(111)}}$	12.45	16.12	22
$ \begin{array}{ll} \sqrt{3} \times \sqrt{3} \times 1 & g \text{-} \\ C_3 N_4 / \sqrt{3} \times \sqrt{3} \times 1 & \\ \text{CoN4(111)} & \end{array} $	12.45	13.94	11

[#]Lattice mismatch is least while considering $2 \times 2 \times 1$ g-C3N4/ $\sqrt{3} \times \sqrt{3} \times 1$ CoN4(111).

Henceforth, this particular geometry was chosen in the present investigation.

Table S4. Calculated energies of different configurations of g-C₃N₄/CoN₄ system

System	Co atoms are facing monolayer g-C ₃ N ₄	N atoms are facing monolayer g- C ₃ N ₄ .
Energy(Ry)	-3192.38	-3192.22

System		Band gap(eV)			
	PBE	PBE+U	HSE06	R2SCAN	Reported Band gap
g-C ₃ N ₄	1.31		2.9	1.80	2.65*(Experiment) 1.41(PBE)** 2.7(HSE06)***
CoN4 bulk	2.6	3.19	4.55	4.63	2.56(PBE)****
CoN ₄ (111) slab		2.37		2.99	
g-C ₃ N ₄ / CoN ₄		1.81		2.22	

Table S5. Band gaps of CoN₄ bulk and g-C₃N₄ using different exchange-correlation functionals

* Jiang, T.; Nan, F.; Zhou, J.; Zheng, F.; Weng, Y.; Cai, T.; Ju, S.; Xu, B.; Fang, L. *A.I.P. Adv.* **2019**, *9*, 055225. ** A.M. Silva, M.I. Rojas, Comput. Theor. Chem. **2016**, *1098*, 41–49

** A.M. Silva, M.I. Rojas, Comput. Theor. Chem. **2016**, *1098*, 41–49 ***Jianjun Liu, Enda Hua, J. Phys. Chem. C (2017) 121 25827-25835

****Jun Deng, Ning Liu, Jiangang Guo, Xiaolong Chen, Phys. Rev B (2019) 99 184409

6. Computational methodology for calculating the band gap in presence of solvent

The solvent related calculations were done suing VASPsol¹ computational package, which integrates solvation into VASP through a self-consistent continuum model. VASPsol is widely used due to its ease of use and low computational costs, making it a valuable tool for chemical systems.^{3,4} This approach incorporates DFT energy through two parameters. (i) The electrostatic interactions between solute and solvent molecules and (ii) the cavitation energy required to create the solute within the solvent. The expressions for these two terms are as follows:

$$E_{ele} = \int dr \varepsilon(r) \frac{|\nabla \varphi(r)|^2}{8\pi}$$
$$E_{vac} = \tau \int dr \, |\nabla S(r)|^2$$

 $\epsilon(r)$ represents the dielectric constant, which can be calculated using the equation

$$\varepsilon(r) = 1 + (\varepsilon_b - 1)S(r)$$

where ε_b is the dielectric constant for the bulk solvent.

The cavity shape function is given by

$$S(r) = \frac{1}{2} erfc \left\{ \frac{\ln\left(\frac{\rho(r)}{\rho(c)}\right)}{\sigma\sqrt{2}} \right\}$$

The parameters $\rho(r)$ and $\rho(c)$ represent the electron density and cutoff electron density, respectively, while σ represents the cavity width. These parameters define the transition region

between the solute and solvent, where the dielectric constant changes smoothly from 1 to the bulk dielectric constant.

Input files

7. Input file for optimization of g-C₃N₄(Quantum ESPRESSO)

```
relax.in
```

```
&CONTROL
  calculation = "relax"
  pseudo_dir = "."
/
&SYSTEM
         = 1.4400e+01
  a
  с
        = 2.00000e+01
  degauss = 1.00000e-02
  ecutwfc = 10.50000e+01
  ibrav = 4
  nat
         = 56
          = 2
  ntyp
  occupations = "smearing"
  smearing = "gaussian"
  vdw_corr ="Grimme-D2"
/
&ELECTRONS
  startingpot = "atomic"
  startingwfc = "atomic+random"
&IONS
  ion_dynamics = "bfgs"
K_POINTS {automatic}
 12 12 1 0 0 0
ATOMIC_SPECIES
     14.00674 N.pbe-n-rrkjus_psl.1.0.0.UPF
Ν
С
     12.01070 C.pbe-n-rrkjus_psl.1.0.0.UPF
ATOMIC POSITIONS {angstrom}
Ν
     4.817083 2.886329 9.140414
Ν
     0.078283 2.886329 9.140414
С
     -1.152319 3.596817 9.140414
Ν
    -1.152317 5.017790 9.140414
Ν
     2.539483 2.886329 9.140414
     1.308881 3.596817 9.140414
С
Ν
     1.308883 5.017790 9.140414
С
     0.078281 5.728278 9.140414
Ν
     3.678283 0.913869 9.140414
С
     3.770081 3.596817 9.140414
     3.770083 5.017790 9.140414
Ν
С
     2.539481 5.728278 9.140414
```

Ν	6.139483	0.913869	9.140414
С	4.908881	1.624357	9.140414
Ν	1.217083	9.121712	9.140414
Ν	-3.521717	9.121712	9.140414
С	-4.752319	9.832200	9.140414
Ν	-4.752317	11.253173	9.140414
Ν	-1.060517	9.121712	9.140414
С	-2.291119	9.832200	9.140414
Ν	-2.291117	11.253173	9.140414
С	-3.521719	11.963661	9.140414
Ν	0.078283	7.149252	9.140414
С	0.170081	9.832200	9.140414
Ν	0.170083	11.253173	9.140414
С	-1.060519	11.963661	9.140414
Ν	2.539483	7.149252	9.140414
С	1.308881	7.859740	9.140414
Ν	12.017083	2.886329	9.140414
Ν	7.278283	2.886329	9.140414
С	6.047681	3.596817	9.140414
Ν	6.047683	5.017790	9.140414
Ν	9.739483	2.886329	9.140414
С	8.508881	3.596817	9.140414
Ν	8.508883	5.017790	9.140414
С	7.278281	5.728278	9.140414
Ν	10.878283	0.913869	9.140414
С	10.970081	3.596817	9.140414
Ν	10.970083	5.017790	9.140414
С	9.739481	5.728278	9.140414
Ν	13.339483	0.913869	9.140414
С	12.108881	1.624357	9.140414
Ν	8.417083	9.121712	9.140414
Ν	3.678283	9.121712	9.140414
С	2.447681	9.832200	9.140414
Ν	2.447683	11.253173	9.140414
Ν	6.139483	9.121712	9.140414
С	4.908881	9.832200	9.140414
Ν	4.908883	11.253173	9.140414
С	3.678281	11.963661	9.140414
Ν	7.278283	7.149252	9.140414
С	7.370081	9.832200	9.140414
Ν	7.370083	11.253173	9.140414
С	6.139481	11.963661	9.140414
Ν	9.739483	7.149252	9.140414
С	8.508881	7.859740	9.140414

8. Input files for the band structure calculation of g-C₃N₄ using VASP involves 4 files (a) INCAR, (b) POSCAR, (c) KPOINTS and (d) POTCAR. All of these input files are pasted below:

a) INCAR Global Pa

Global Parameters	
ISTART = 1	(Read existing wavefunction; if there)
# ICHARG = 11	(Non-self-consistent: GGA/LDA band structures)
LREAL = Auto	(Projection operators: automatic)
ENCUT = 540	(Cut-off energy for plane wave basis set, in eV)
PREC = Normal	(Precision level)
LWAVE = .TRUE.	(Write WAVECAR or not)
LCHARG = .TRUE.	(Write CHGCAR or not)
ADDGRID= .TRUE	. (Increase grid; helps GGA convergence)

Static Calculation

b)

(tetrahedron method for DOS)
(PAW radii for projected DOS)
(Max electronic SCF steps)
(SCF energy convergence; in eV)

EDIFF = $1E-05$ (SCF energy convergence; in eV)			
	CAN		
MEIAGGA = K2S	CAN		
LASFI INUE. I MAYMIY -4			
1.0	0.000000000	0.000000000	
7 1000008003	12 4707654841	0.000000000	
0.0000000000	0.0000000000	20.0000000000	
N C	0.00000000000	20.00000000000	
32 24			
Cartesian			
4.901860441	2.935269099	9.140400290	
0.130579158	2.969962609	9.140400290	
-1.053712865	5.021216564	9.140400290	
2.473372799	2.970386671	9.140400290	
1.302415217	5.014108237	9.140440226	
3.718000576	0.814602853	9.140400290	
3.658716033	5.022114489	9.140400290	
6.087549358	0.815276296	9.140400290	
1.301853670	9.170639205	9.140400290	
-3.469435123	9.205395154	9.140400290	
-4.653726931	11.256598934	9.140400290	
-1.126598567	9.205819587	9.140400290	
-2.297577606	11.249428912	9.140440226	
0.118065688	7.049973330	9.140400290	
0.058701752	11.257496859	9.140400290	
2.487513619	7.050646774	9.140400290	
12.101860250	2.935269099	9.140400290	
7.330593773	2.969912807	9.140400290	
6.146229653	5.021266366	9.140400290	
9.673358232	2.970411572	9.140400290	
8.502450861	5.014120502	9.140440226	
10.918022165	0.814590402	9.140400290	

10.858687089	5.0220646	9.140400)290
13.287520414	0.8152762	96 9.140400	0290
8.501853050	9.17063920	9.140400	290
3.730565115	9.20534535	9.140400	290
2.546244125	11.25662420	07 9.140400)290
6.073393947	9.20580695	50 9.140400	290
4.902436794	11.2494534	42 9.140440)226
7.318044039	7.04996069	9.140400	290
7.258701132	11.2574723	30 9.140400)290
9.687470084	7.05064677	4 9.140400	290
-1.001044688	3.68413832	28 9.140400	290
1.302040781	3.61451419	9.140419	960
0.090179942	5.71351873	³⁶ 9.140440	226
3.605162191	3.68462482	28 9.140419	960
2.514959912	5.71415464	3 9.140440	226
4.902465601	1.43760488	30 9.140419	 960
-4.601044593	9.91949616	59 9.140419	960
-2.297951828	9.84990919	9.140419	960
-3.509834340	11.9489014	78 9.140440)226
0.005191469	9.91998229	9.140419	960
-1.085011024	11.9495124	84 9.14044()226
1.302458347	7.67302488	9.140419	960
6.198983767	3.68413832	28 9.140400	290
8.502054967	3.61451419	9.140419	- 20
7.290172455	5.71353100)1 9.140419	960
10.805190968	3.6845999	27 9.140419	9960
9.714952855	5.71414200)6 9.140440	226
12.102457954	1.4376423	25 9.140419	9960
2.598955324	9.91949616	59 <u>9.140400</u>	290
4.902040256	9.84989730	9.140419	960
3.690165040	11.9489014	78 9.140440)226
7.205212736	9.91997040	9.140419	960
6.114974623	11.9495124	84 9.140440)226
8.502450861	7.67303751	8 9.140419	960
KPOINTS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
K-Path Generated	l by VASPKIT.		
20			
Line-Mode			
Reciprocal			
0.0000000000	0.0000000000	0.0000000000	GAMMA
0.5000000000	0.0000000000	0.0000000000	М
0.5000000000	0.0000000000	0.0000000000	М
0.33333333333	0.3333333333	0.0000000000	Κ
0.33333333333	0.3333333333	0.0000000000	Κ
0.0000000000	0.0000000000	0.0000000000	GAMMA

c)

d) POTCAR contains pseudopotentials of Carbon and Nitrogen

9. Input files for the PDOS calculation of g-C₃N₄ using VASP requires 4 files (a) INCAR, (b) POSCAR (c) KPOINTS and (d) POTCAR

a) INCAR

- **Global Parameters** ISTART = 1(Read existing wavefunction; if there) LREAL = Auto(Projection operators: automatic) ENCUT = 540NELM = 1000EDIFF = 1E-5PREC = Normal ALGO = AISPIN =2 LORBIT = 11LWAVE = .TRUE. (Write WAVECAR or not) LCHARG = .TRUE. (Write CHGCAR or not) SIGMA = 0.05METAGGA = R2SCAN LASPH=.TRUE. LMAXMIX=4 b) POSCAR (same as band structure calculation)
- c) **KPOINTS**

k-points 0 Monkhorst-pack 12 12 1 0 0 0

d) POTCAR contains pseudopotentials of Carbon and Nitrogen

10. Input files for the work function calculation of g-C₃N₄ needs 3 files, (a) scf.in, (b) pp.in and (c) avg.in all of them are given below.

```
a) scf.in
   &CONTROL
     calculation = "scf"
     pseudo_dir = "."
     outdir = "data"
     verbosity = "high"
   &SYSTEM
          = 1.4400e+01
     a
          = 2.00000e+01
     с
     degauss = 1.00000e-02
     ecutwfc = 10.50000e+01
     ibrav = 4
     nat
            = 56
             = 2
     ntyp
     occupations = "smearing"
     smearing = "gaussian"
```

```
vdw_corr ="Grimme-D2"
/
&ELECTRONS
startingpot = "atomic"
startingwfc = "atomic+random"
/
```

K_POINTS {automatic} 12 12 1 000

ATOMIC_SPECIES

N 14.00674 N.pbe-n-rrkjus_psl.1.0.0.UPF

C 12.01070 C.pbe-n-rrkjus_psl.1.0.0.UPF

ATOMIC_POSITIONS (angstrom)

Ν	4.9018571031	2.9352663273	9.1404028751
Ν	0.1305810907	2.9699658975	9.1404000433
С	-1.0010478436	3.6841346545	9.1404095881
Ν	-1.0537186275	5.0212188802	9.1404030826
Ν	2.4733704285	2.9703894290	9.1404053092
С	1.3020471198	3.6145094129	9.1404261983
Ν	1.3024107533	5.0141056835	9.1404329964
С	0.0901823662	5.7135200753	9.1404317644
Ν	3.7180044075	0.8146032337	9.1404045642
С	3.6051630824	3.6846205373	9.1404210857
Ν	3.6587135913	5.0221093963	9.1404061216
С	2.5149669892	5.7141506483	9.1404305338
Ν	6.0875518926	0.8152825109	9.1404062546
С	4.9024634453	1.4376066175	9.1404174105
Ν	1.3018511808	9.1706402490	9.1404048993
Ν	-3.4694306709	9.2053894499	9.1403995761
С	-4.6010511019	9.9194951841	9.1404101286
Ν	-4.6537265009	11.2566050821	9.1404015047
Ν	-1.1265983403	9.2058203287	9.1404024292
С	-2.2979470827	9.8499086432	9.1404253225
Ν	-2.2975729614	11.2494253930	9.1404344347
С	-3.5098406160	11.9489059014	9.1404309198
Ν	0.1180631452	7.0499710001	9.1404074318
С	0.0051983754	9.9199816570	9.1404211315
Ν	0.0587009543	11.2574951118	9.1404074851
С	-1.0850118024	11.9495171142	9.1404317900
Ν	2.4875129849	7.0506428370	9.1404050870
С	1.3024565521	7.6730288717	9.1404184829
Ν	12.1018572516	2.9352691252	9.1404022407
Ν	7.3305891061	2.9699157822	9.1403983350
С	6.1989779477	3.6841428138	9.1404082020
Ν	6.1462325349	5.0212604007	9.1404001535
Ν	9.6733637277	2.9704126825	9.1404044066
С	8.5020579612	3.6145140636	9.1404254317
Ν	8.5024603119	5.0141159922	9.1404333567
С	7.2901793429	5.7135282307	9.1404299690
Ν	10.9180180274	0.8145964000	9.1404045674

С	10.8051857981	3.6846006530	9.1404204881
Ν	10.8586812840	5.0220665705	9.1404053746
С	9.7149577188	5.7141380628	9.1404302798
Ν	13.2875199628	0.8152783623	9.1404040116
С	12.1024578335	1.4376374982	9.1404162147
Ν	8.5018585724	9.1706418905	9.1404058239
Ν	3.7305711886	9.2053466440	9.1403992092
С	2.5989479541	9.9195007761	9.1404096802
Ν	2.5462476268	11.2566184157	9.1404022993
Ν	6.0733910975	9.2058028800	9.1404067976
С	4.9020476238	9.8498956732	9.1404261043
Ν	4.9024373508	11.2494497001	9.1404323361
С	3.6901581224	11.9489061263	9.1404301736
Ν	7.3180456839	7.0499594169	9.1404047912
С	7.2052042812	9.9199751994	9.1404234997
Ν	7.2586990475	11.2574746546	9.1404085843
С	6.1149761874	11.9495177645	9.1404308248
Ν	9.6874727202	7.0506485032	9.1404046869
С	8.5024538198	7.6730355903	9.1404177064

b) pp.in

```
&inputPP
outdir='.',
plot_num=11
filplot = 'gc3n41100.pot'
/
&plot
iflag=3,
output_format=5,
/
```

c) avg.in

1 gc3n41100.pot 1.D0 1440 3 3.835000000

11. Input file for the optical property calculation of g-C₃N₄ using CASTEP

spectral_task : Optics continuation : default xc functional : PBE sedc_apply : true sedc_scheme : G06 spin_polarized : false opt_strategy : Default page wvfns: 0 cut_off_energy : 500.000000000000000 grid_scale : 1.5000000000000000 fine_grid_scale : 1.5000000000000000 finite_basis_corr : 0 elec_energy_tol: 2.00000000000000e-06 max_scf_cycles : 1000 fix_occupancy : false metals_method : EDFT num_occ_cycles : 6 nextra_bands : 7 0.100000000000000 smearing_width : num_dump_cycles: 0 spectral_nbands : 120 calculate_stress : false calculate_ELF : false popn_calculate : false calculate_hirshfeld : false calculate_densdiff : false pdos calculate weights : false spectral_write_eigenvalues : true

References

[1] K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias, R.G. Hennig, J. Chem. Phys. (2014) 140.

[2] J. Han, Y. Kim, H.W. Kim, D.H.K. Jackson, D. Lee, H. Chang, H.J. Chae, K.Y. Lee, H.J. Kim, Electrochem. Commun. 83 (2017) 46–50.

[3] M.C. Groenenboom, R.M. Anderson, D.J. Horton, Y. Basdogan, D.F. Roeper, S.A. Policastro, J.A. Keith, J. Phys. Chem. C 121 (2017) 16825–16830.