BlueP Encapsulated Janus MoSSe as Promising Heterostructure Anode Materials for LIBs

Gayatree Barik¹ and Sourav Pal^{2*}

¹Department of Chemistry, S.C.S. (Autonomous) College, Puri-752001, Odisha, India ²Department of Chemistry, Ashoka University, Sonepat-131029, Haryana, India Email: sourav.pal@ashoka.edu.in

Fig. S1: (i) Phonon dispersion spectra of various stacking configurations of BlueP-SMoSe heterostructure. (a) All P atoms above Mo and S atoms (b) All P atoms above S atoms. (c) All P atoms above Mo atoms.

Fig. S1: (ii) Phonon dispersion spectra of various stacking configurations of BlueP-SeMoS heterostructure. (a) All P atoms above Mo and Se atoms (b) All P atoms above Se atoms (c) All P atoms above Mo atoms.

Fig. S2 (i): Variation of total energy with applied (a) uniaxial strain along the x-axis, (b) uniaxial strain along the y-axis, and (c) bi-biaxial strain along the x and y-axis for lithiated BlueP-SMoSe heterostructure.

Fig. S2 (ii): Variation of total energy with applied (a) uniaxial strain along the x-axis, (b) uniaxial strain along the y-axis, and (c) bi-biaxial strain along the x and y-axis for lithiated BlueP-SeMoS heterostructure.

Table S1: The calculated Li diffusion energy when Li migrates at various surfaces and interfaces of BlueP-Janus MoSSe heterostructures from one stable adsorption location to another.

BlueP-SMoSe Heterostructure		BlueP-SeMoS Heterostructure	
Surface	Barrier Energy (eV)	Surface	Barrier Energy (eV)
Li-BlueP-SMoSe	0.085	Li-BlueP-SeMoS	0.081
BlueP-Li-SMoSe	0.221	BlueP-Li-SeMoS	0.135

BlueP-SMoSe-Li	0.166	BlueP-SeMoS-Li	0.188

Table S2: The calculated Li diffusion coefficient when Li migrates at various surfaces and interfaces of BlueP-Janus MoSSe heterostructures from one stable adsorption location to another.

BlueP-SMoSe Heterostructure		BlueP-SeMoS Heterostructure	
Surface	Diffusion Co-	Surface	Diffusion Co-
	efficient $(\frac{cm^2}{sec})$		$efficient (cm^2 / sec)$
Li-BlueP-SMoSe	6.05×10^{-5}	Li-BlueP-SeMoS	7.06×10^{-5}
BlueP-Li-SMoSe	3.16×10^{-7}	BlueP-Li-SeMoS	8.78×10^{-6}
BlueP-SMoSe-Li	2.66×10^{-6}	BlueP-SeMoS-Li	2.99×10^{-8}