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S1. RELAXATION RATE COEFFICIENTS

The rates for electron or hole scattering by longitudinal acoustical LA Phonons from
initial state |ψiν〉 with energy Ei

ν to final states |ψfν 〉 with energy Ef
ν , are calculated in

first-order perturbation theory using the Fermi golden rule as follows :

Γi→fν = 2π
~
∑

q

∣∣∣〈Ψi
∣∣∣HLA

ν−ph

∣∣∣Ψf
〉∣∣∣2 δ (Ef

ν − Ei
ν ∓ ELA(q)

)
(S1)

where q = (qx, qy, qz) is the phonon wave vector, ν = e, h, for electron and hole, respec-
tively. The upper (lower) signs in the δ function account for emission (absorption) of
phonons by an electron in the initial quantum state i. The electron-phonon interaction
Hamiltonian is given by :

HLA
ν−ph = VLA(q)e∓iq·rν â+

LA,q + c.c. (S2)

Here, â+
LA,q (âLA,q) are the phonon creation (annihilation) operators for mode LA with

wave vector q. The coupling of electrons/hole to longitudinal-acoustic (LA) phonons by
means of a deformation potential Dν is described by:

V LA
ν (q) = Dν√

2ρdc2
sV

√
ELA(q), (S3)

where ELA(q) = ~ωq = ~csq is the LA phonon energy, V = LxLyLz is the quantization
volume, ρd is the mass density, cs is the longitudinal velocity of sound. The initial and
final state is given by :

|Ψi〉 =
∣∣∣ψiν〉⊗ |Nq,LA〉q

|Ψf〉 =
∣∣∣ψfν〉⊗ |Nq,LA ± 1〉q

where |Nq,LA〉q is the number state of the phonon mode with wavevector q.
The corresponding electronic part of the wavefunction is given by particle-in-a-box

type states, i.e.

|ψi(f)
ν 〉 = |ψi(f)

ν (x, y, z)〉 =
√

2
Lx

sin
(
ni(f)
x πx

Lx

)
×
√

2
Ly

sin
(
ni(f)
y πy

Ly

)
×
√

2
Lz

sin
(
ni(f)
z πz

Lz

)

=
√

8
V

sin
(
ni(f)
x πx

Lx

)
sin

(
ni(f)
y πy

Ly

)
sin

(
ni(f)
z πz

Lz

)
. (S4)

Due to the rather low charge carrier masses compared to the lateral extensions of the
nanostructures, the quantized wavefunctions apply in every case - even the longest
nanorod of 40 nm length.
The occupation number is given by the Bose distributionNLA(q, T ) =

[
exp

(
ELA(q)
KBT

)
− 1

]−1
.

The delta functions δ
(
Ef
ν − Ei

ν ± ELA(q)
)
ensure the energy conservation for inelastic

scattering processes by the absorption or emission of phonons of energy ELA(q).

〈Ψi|HLA
ν,ph|Ψf〉 =

√(
NLA(q, T ) + 1

2 ±
1
2

)
V LA
ν (q)〈ψiν |e∓iq·rν |ψfν 〉 (S5)
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The sum over all the q vectors in Eq S1 can be expressed as an integral over q, replacing
Eq.S2, (S3) and (S5) in Eq(S1) we find:

Γi→fν = D2
ν

2(2π)2ρd~c2
s

∫∫∫
dqxdqydqz(

NLA(q, T ) + 1
2 ±

1
2

)
ELA(qx, qy, qz)

∣∣∣∣∣〈ψiν |e−iq·rν |ψfν 〉
∣∣∣∣∣
2

δ
(
Ef
ν − Ei

ν ∓ ELA(q)
)

(S6)

In our work, we treat the structures as cuboids in the strong confinement regime. The
confinement is modeled by potential barriers of infinite height outside the particle region.
This particular choice of the confinement potential results in a complete separation of the
carrier motion in the three spatial directions.

The matrix element is given by:

〈ψiν |e−iq·rν |ψfν 〉 =〈φizν |e
−iqz·zν |φfzν 〉 × 〈φ

i
xν |e

−iqx·xν |φfxν 〉 × 〈φ
i
yν |e

−iqy·ye|φfyν 〉
= Fν

nix,n
f
x
(qx) × Fν

niy ,n
f
y
(qy) × Fν

niz ,n
f
z
(qz) (S7)

Fν
niη ,n

f
η
(qη) =

sin

(
niηπ + nfηπ + qηLη

2

)
niηπ + nfηπ + qηLη

+
sin

(
nfηπ + qηLη − niηπ

2

)
nfηπ + qηLη − niηπ

+
sin

(
niηπ − nfηπ + qηLη

2

)
niηπ − n

f
ηπ + qx(y)Lx(y)

+

sin

(
niηπ + nfηπ − qηLη

2

)
niηπ + nfηπ − qηLη

(S8)

As seen from Eq.S8, Fν
niη ,n

f
η
(qη) decreases rapidly with increasing qηLη � 1. For small,

qη, it approaches zero and unity for interband
(
niη 6= nfη

)
and intraband

(
niη = nfη

)
transi-

tions, respectively. The matrix element reduces to the conservation of the crystal momen-
tum

[
δ
(
kνi − kνf + q

)]
for the case of an unconfined direction (for example laterally infinite

TMDCs), where kνi(f) is the initial (final) electron/hole wave vector. For niα = nfα = 1,
the matrix element Fν

niη ,n
f
η
(qη) can be written as :

Fν11(qη) =
π2 sin(qηLη2 )

qηLη
2

[
π2 − (qηLη2 )2

] , (S9)

The scattering rate is rewritten :

Γi→fν = D2
ν

2(2π)2ρd~c2
s

∫∫∫ ∣∣∣∣∣FνLA(qx, qy, qz)
∣∣∣∣∣
2

ELA(qx, qy, qz)δ
(
Ef
ν − Ei

ν ∓ ELA(q)
)

dqxdqydqz

(S10)
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After taking advantage of the δ functions, which stands for the conservation of the total
energy, we have evaluated Eq. S10 numerically for LA phonon scattering. In table S1-S6,
we calculate the electron or hole-Phonon scattering rate of three different sizes of CdSe
nanoparticles (6 × 6 × 6 nm3, 20 × 6 × 6 nm3 and 40 × 6 × 6 nm3) for several transitions
and for three different temperatures T = 10K, 70K, 300K.

TABLE S1. The energy difference, the absorption (up) and emission (down)-scattering rates for
electron-longitudinal acoustic phonon (LA) interaction for 6× 6× 6nm3 size.

|i〉 ↔ |f〉 ∆E (eV) ΓUCe (ps−1) ΓDCe (ps−1)

300 K 70 K 10 K 300 K 70 K 10K
|1〉 ↔ |2〉 0.18 0.33 6.1 · 10−2 1.4 · 10−3 0.375 0.1076 4.8 · 10−2

|1〉 ↔ |3〉 0.35 5.7 · 10−2 1 · 10−2 1.4 · 10−4 6.7 · 10−2 2 · 10−2 1 · 10−2

|1〉 ↔ |4〉 0.464 4.7 · 10−2 8.1 · 10−3 7.7 · 10−5 5.5 · 10−2 1.6 · 10−2 8.8 · 10−3

|2〉 ↔ |3〉 0.18 0.23 4.2 · 10−2 9.8 · 10−4 0.27 7.8 · 10−2 3.7 · 10−2

|2〉 ↔ |4〉 0.29 0.11 2.2 · 10−2 9.1 · 10−4 0.123 3.4 · 0−2 1.3 · 10−2

|3〉 ↔ |4〉 0.116 0.6 0.11 2.65 · 10−3 0.69 0.2 9.35 · 10−2

TABLE S2. The energy difference, the absorption (up) and emission (down)-scattering rates for
electron-longitudinal acoustic phonon (LA) interaction for 20× 6× 6 nm3 size.

|i〉 ↔ |f〉 ∆E (eV) ΓUCe (ps−1) ΓDCe (ps−1)

300 K 70 K 10 K 300 K 70 K 10K
|1〉 ↔ |2〉 1.56 · 10−2 6.7 1.36 6.2 · 10−2 7.3 1.95 0.652
|1〉 ↔ |3〉 4.18 · 10−2 2.325 0.465 1.83 · 10−2 2.55 0.69 0.20
|1〉 ↔ |4〉 7.8310−2 0.9 0.18 6.48 · 10−3 0.99 0.27 9.01 · 10−2

|2〉 ↔ |3〉 2.610−2 3.16 0.64 3.2 · 10−2 3.42 0.9 0.30
|2〉 ↔ |4〉 6.26 · 10−2 0.94 0.19 8.56 · 10−3 1.02 0.27 9.1 · 10−2

|3〉 ↔ |4〉 3.65 · 10−2 2.45 0.5 2.5 · 10−2 2.65 0.7 0.23
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TABLE S3. The energy difference, the absorption (up) and emission (down)-scattering rates for
electron-longitudinal acoustic phonon (LA) interaction for 40× 6× 6 nm3 size.

|i〉 ↔ |f〉 ∆E (eV) ΓUCe (ps−1) ΓDCe (ps−1)

300 K 70 K 10 K 300 K 70 K 10K
|1〉 ↔ |2〉 3.9210−3 15.16 3.1 0.15 16.42 4.35 1.41
|1〉 ↔ |3〉 1.0410−2 4.04 0.82 4.04 · 10−2 4.38 1.16 0.378
|1〉 ↔ |4〉 1.9510−2 1.03 0.21 9.59 · 10−3 1.12 0.30 0.10
|2〉 ↔ |3〉 6.528 · 10−3 8.05 1.63 7.8310−2 8.76 2.33 0.78
|2〉 ↔ |4〉 1.56 · 10−2 2.04 0.42 2.1 · 10−2 2.21 0.60 0.19
|3〉 ↔ |4〉 9.14 · 10−3 4.32 0.88 4.42 · 10−2 4.68 1.24 0.41

TABLE S4. The energy difference, the absorption (up) and emission (down)-scattering rate for
hole-longitudinal acoustic phonon (LA) interaction for 6× 6× 6 nm3 size.

|i〉 ↔ |f〉 ∆E (eV) ΓUCh (ps−1) ΓDCh (ps−1)

300 K 70 K 10 K 300 K 70 K 10K
|1〉 ↔ |2〉 4.01710−2 2.23 0.413 9.28 · 10−3 2.55 0.73 0.32
|1〉 ↔ |3〉 8.03 · 10−2 0.71 0.12 1.74 · 10−3 0.84 0.25 0.128
|1〉 ↔ |4〉 0.107 0.36 6.26 · 10−2 5.98 · 10−4 0.43 0.13 6.87 · 10−2

|2〉 ↔ |3〉 4.01710−2 1.59 0.28 6.41 · 10−3 1.85 0.55 0.26
|2〉 ↔ |4〉 6.69 · 10−2 0.81 0.15 6.53 · 10−3 0.89 0.24 9.52 · 10−2

|3〉 ↔ |4〉 2.67 · 10−2 2.34 0.43 9.96 · 10−3 2.7 0.78 0.36

TABLE S5. The energy difference, the absorption (up) and emission (down)-scattering rate for
hole-longitudinal acoustic phonon (LA) interaction for 20× 6× 6 nm3 size.

|i〉 ↔ |f〉 ∆E (eV) ΓUCh (ps−1) ΓDCh (ps−1)

300 K 70 K 10 K 300 K 70 K 10K
|1〉 ↔ |2〉 3.615 · 10−3 9.02 1.82 8.11 · 10−2 9.82 2.62 0.88
|1〉 ↔ |3〉 9.642 · 10−3 2.32 0.46 1.83 · 10−2 2.54 0.68 0.23
|1〉 ↔ |4〉 1.81 · 10−2 0.95 0.18 6.58 · 10−3 1.04 0.28 0.10
|2〉 ↔ |3〉 6.02610−3 4.4 0.88 3.93 · 10−2 4.82 1.29 0.44
|2〉 ↔ |4〉 1.44 · 10−2 1.14 0.23 1.02 · 10−2 1.24 0.33 0.11
|3〉 ↔ |4〉 8.437 · 10−3 2.63 0.53 2.56 · 10−2 2.86 0.76 0.25
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TABLE S6. The energy difference and the absorption (up) and emission (down)-scattering rate
for hole-longitudinal acoustic phonon (LA) interaction for 40× 6× 40nm3 size.

|i〉 ↔ |f〉 ∆E (eV) ΓUCh (ps−1) ΓDCh (ps−1)

300 K 70 K 10 K 300 K 70 K 10K
|1〉 ↔ |2〉 9.0410−4 12.15 2.55 0.15 16.4 4.19 1.12
|1〉 ↔ |3〉 2.410−3 4.72 0.97 5.74 · 10−2 5.11 1.35 0.44
|1〉 ↔ |4〉 4.510−3 2.83 0.57 2.59 · 10−2 3.09 0.82 0.27
|2〉 ↔ |3〉 1.510−3 6.58 1.36 7.36 · 10−2 7.07 1.85 0.56
|2〉 ↔ |4〉 3.6210−3 3.91 0.75 2.02 · 10−2 4.38 1.22 0.40
|3〉 ↔ |4〉 2.1 · 10−3 4.7 0.96 5.08 · 10−2 5.072 1.33 0.42

TABLE S7. The material parameters used in the calculations: m0 is the free electron mass.
me = 0.18 m0 [1] Dh= 0.76 eV [2, 3]
mh= 0.78 m0 [4] cs= 3860 m/s [5]
De = -1.52 eV [2, 3] ρd = 5810 Kg/m3 [6]
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In the following section we discuss our scattering rate results with respect to litera-
ture. Our results on the phonon scattering rates are in-line with published experimental
and theoretical findings, validating the accuracy of our approach. In reference Ref.[7]
the authors have measured a scattering rate of 0.27 ps−1 at room temperature for the
lowest state in a 6 nm CdSe nanoparticle. This is in good agreement with the obtained
value of 0.33 ps−1 for the lowest |1〉 → |2〉 electron transition for 6 nm cuboids at room
temperature in our study. Furthermore, Guyot-Sionnest et al., observed in ref. [8] a fast
relaxation time of 0.16 ps−1 for 6 nm CdSe colloidal quantum dots using infrared pump-
probe measurements, corroborating our results. Makkar et al. (Ref. [9]) reported for 12
nm dots at room temperature a cooling time of 650 fs, corresponding to rates of ∼1.5
ps−1. We note the similar order of magnitude with respect to our scattering rates, with
discrepancies potentially attributable to differences in nanocrystal size and shape, as the
scattering rate e.g. strongly depends on nanocrystal size [10]. Our above presented calcu-
lation results are based on semi-analytical models for the phonon scattering the authors
already introduced in Ref. [11], knowing that it gives appropriate results for CdSe based
nano systems (as referring to phonon scattering rates and energies), in agreement with
experimental measurements and published literature.

S2. MOBILITY PEAK MAXIMUM AND LINEWIDTH

Starting with Equation

µ2LS = −i
ω

}qe
(ρeq11 − ρ

eq
22)|M21|2

(ω − ω21) + iγ21

(ω − ω21)2 + γ2
21 + 4GΩ2 (S11)

from the main text, where again G = γ21/(Γ21 +Γ12) the ratio of dephasing and relaxation
rate coefficients, we first extract its real part as focus of the discussion ahead

Re {µ2LS} = −i
ω

}qe
(ρeq11 − ρ

eq
22)|M21|2

(ω − ω21) + iγ21

(ω − ω21)2 + γ2
21 + 4GΩ2 . (S12)

From here, in order to describe the position of the Lorentzian line maximum (the peak),
we first form the derivative with respect to ω and set it zero

d
dωRe {µ2LS} = γ21

}qe
(ρeq11 − ρ

eq
22)|M21|2

γ2
21 + 4GΩ2 − (ω − ω21)(ω + ω21)

[(ω − ω21)2 + γ2
21 + 4GΩ2]2

!= 0. (S13)

Solving for the frequency, we find the corresponding position of the peak maximum ωmax.
The quadratic equation implies two solutions, one of which going to be non-physical, im-
plying a negative resonance frequency (but mathematically necessary due to antiresonant
contributions to the response function).

ωmax =
√
ω2

21 + γ2
21 + 4GΩ2. (S14)
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Two things are striking: (i) the position of the maximum is growing upon higher field
strength (via Ω). (ii) Even in the linear regime (Ω = 0), the resonance maximum of
extended Kubo-Greenwood formula is depending on the dephasing rate coefficient γ21

itself. This is an artifact of the equilibration current[12], leading to vanishing DC mobility.
Only, when the natural dephasing is small vs. the intrinsic resonance (i.e. ω21 > γ21)
the position of the resonance maximum coincides with the eigenfrequency of the two-level
system

lim
Ω→0

ω21�γ21

ωmax = ω21. (S15)

Now, reinserting Equation S14 back into S12, we are capable of describing the resonance
maximum as a function of the system properties as well as experimental input as given
by Equation (22) from the main text.

Likewise, we determine the full width at half maximum (FWHM) by solving for the
frequency positions fulfilling the condition

Re {µ2LS}
!= 1

2Re {µ2LS(ωmax)} . (S16)

We

S3. NONLINEAR CONTRIBUTION TO THE DENSITY MATRIX

From evaluation of the frequency-dependent mobility in Eq. (16), we realize that only
off-diagonal elements off the density matrix contribute to the expectation value. For that
reason our main concern when calculating third order mobility, is tied to third order
polarization as well. Reducing our discussion, as indicated in the main text, to a two
level system, we start by setting q = 3 in Eq. (17) and write for the time-dependent third
order polarization

ρ̇
(3)
21 = −(iω21 + γ21)ρ(3)

21 + i

}
(
ρ

(2)
11 − ρ

(2)
22

)
M21E(t) + i

}

 2∑
n6=1

M2nρ
(2)
n1 −

2∑
n6=2

ρ
(2)
2nMn1

E(t)

(S17)

This Equation can be severely reduced by evaluating the actual sum, as we immediately
recognize the entire bracket term to vanish due to the purely off-diagonal nature of the
transition dipole matrix M . We write:

ρ̇
(3)
21 = −(iω21 + γ21)ρ(3)

21 + i

}
(
ρ

(2)
11 − ρ

(2)
22

)
M21E(t). (S18)

While the difference in population terms is usually tackled by invoking the closure relation
ρ11 + ρ22 = 1, we need to reexamine this assumption in light of perturbation expansion.
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As before, we write ρij = ρ
(0)
ij + λρ

(1)
ij + λ2ρ

(2)
ij + λ3ρ

(3)
ij , which is supposed to hold for each

and every element of ρ likewise. After insertion and rearranging, we find for the closure
relation in perturbation theory

ρ
(0)
11 + ρ

(0)
22 = 1 (S19)

ρ
(1)
11 + ρ

(1)
22 = 0 (S20)

ρ
(2)
11 + ρ

(2)
22 = 0 (S21)

ρ
(3)
11 + ρ

(3)
22 = 0. (S22)

This does in no way mean that the perturbation elements themselves are vanishing, in-
stead, they simply evolve pairwise, so that the second order population elements (as
demanded in Equation S18 above) relate via ρ

(2)
11 = −ρ(2)

22 . Ergo, Equation S18 simplifies
as:

ρ̇
(3)
21 = −(iω21 + γ21)ρ(3)

21 − 2 i

}
ρ

(2)
22 M21E(t). (S23)

At this point we introduce the population expansion equation according to our relaxation
model - again in two-level approximation, we write

ρ̇
(2)
22 = i

}
(
ρ
∗(1)
21 − ρ

(1)
21

)
M21E(t) + Γ21ρ

(2)
11 − ρ

(2)
22 Γ12. (S24)

Applying the perturbation closure relation reduces the Equation to

ρ̇
(2)
22 = i

}
(
ρ
∗(1)
21 − ρ

(1)
21

)
M21E(t)− (Γ21 + Γ12)ρ(2)

22 . (S25)

From there, we are left with the first order perturbation expansion of the polarization
element ρ21. This is a crucial step, as it traces the expansion series down to an exactly
solvable equation - either in the time or frequency domain. Again, we revisit Equation
(17) from the main text and formulate the 1st order polarization evolution equation.

ρ̇
(1)
21 = −(iω21 + γ21)ρ(1)

21 + i

}
(
ρ

(0)
11 − ρ

(0)
22

)
M21E(t). (S26)

Identifying the 0th order perturbation element as the corresponding thermal equilibrium
density matrix element, i.e. ρ(0)

ij = ρeqij , we can define the mutually affecting polarization-
population series: Although we could easily solve this series in the time domain, we step
into to the frequency domain, as this already favors the later description of frequency-
dependent mobility. Starting off with the 1st order term, we write by Fourier transforming
using FT {ρ̇21(t)} = −iωρ̃21(ω):

−iωρ̃
(1)
21 = −(iω21 + γ21)ρ̃(1)

21 + i

}
(ρeq11 − ρ

eq
22)M21Ẽ(ω). (S27)

Solving the equation, we arrive at

ρ̃
(1)
21 (ω) = i

}
(ρeq11 − ρ

eq
22)M21

i(ω21 − ω) + γ21
Ẽ(ω). (S28)
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ρ̇
(1)
21 = −(iω21 + γ21)ρ(1)

21 + i

}
(ρeq11 − ρ

eq
22)M21E(t)

⇓

ρ̇
(2)
22 = i

}

(
ρ
∗(1)
21 − ρ

(1)
21

)
M21E(t)− (Γ21 + Γ12)ρ(2)

22

⇓

ρ̇
(3)
21 = −(iω21 + γ21)ρ(3)

21 − 2 i

}
ρ

(2)
22 M21E(t)

In order to use this equation in the higher order population, we need to use the FT again.
However, Equation S25 contains the time domain products ρ∗(1)

21 E(t) and ρ(1)
21 E(t), so that

the Fourier transform implies a convolution integral in the frequency domain. We start
with

ρ̃
(2)
22 (ω) = i

}

M21

∫ (
ρ̃
∗(1)
21 (−ω′)− ρ̃(1)

21 (ω′)
)
Ẽ(ω − ω′)dω′

(Γ21 + Γ12)− iω
. (S29)

where we made use of the FT property saying FT {ρ∗21(t)} = ρ̃∗21(−ω) (since ρ21(t) itself
is a complex quantity). Comparing Equation S28 and S29, we need to evaluate the term(
ρ̃
∗(1)
21 (−ω′)− ρ̃(1)

21 (ω′)
)
:

ρ̃
∗(1)
21 (−ω′)− ρ̃(1)

21 (ω′) = − i

}
(ρeq11 − ρ

eq
22)M21

−i(ω21 + ω′) + γ21
Ẽ∗(−ω′)− i

}
(ρeq11 − ρ

eq
22)M21

i(ω21 − ω′) + γ21
Ẽ(ω′)

= − i

}
M21 (ρeq11 − ρ

eq
22)
[

1
−i(ω21 + ω′) + γ21

+ 1
i(ω21 − ω′) + γ21

]
Ẽ(ω′)

= −2 i

}
M21 (ρeq11 − ρ

eq
22) γ21 − iω′

ω2
21 + (γ21 − iω′)2 Ẽ(ω′), (S30)

Here, the same FT rule as above led to FT {E(t)} = Ẽ∗(−ω) = Ẽ(ω), since the electric
field is a real-valued quantity. Given the elaboration above, we can plug the term into
Equation S29 and conclude

ρ̃
(2)
22 (ω) =− 2

(
i

}

)2
M2

21(ρeq11 − ρ
eq
22)×∫ ( 1

2(Γ21 + Γ12)− iω

)(
γ21 − iω′

ω2
21 + (γ21 − iω′)2

)
Ẽ(ω′)Ẽ(ω − ω′)dω′. (S31)

Lastly, we need to express the third order polarization element in the frequency domain
starting from Equation S23

ρ̃
(3)
21 (ω) = −2 i

}
M21

1
i(ω21 − ω) + γ21

∫
ρ̃

(2)
22 (ω′)Ẽ(ω − ω′)dω′, (S32)

so that we arrive - after inserting Equation S31 above - at Equation (24) given in the
main text. We have to keep in mind that the mutual insertion of different expressions
containing convolution integrals requires to rename the integration variable in order not

S10
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FIG. S1. Size dependence of real (a,b,c) and imaginary (d,e,f) hole mobility for 6× 6× 6 nm3,
20× 6× 6 nm3 and 40× 6× 6 nm3 CdSe quantum dots and wires at 10 K, 70 K and 300 K and
a weak THz field with E0 = 0.1 kV/cm, ω0 = 2π×1 THz, a = -3, φ = 0 and τfwhm = 0.5 ps.

to lose the actual mathematical meaning. We write:

ρ̃
(3)
21 (ω) = 4

(
i

}

)3
M3

21(ρeq11 − ρ
eq
22) 1

i(ω21 − ω) + γ21
× (S33)

∫∫ ( 1
(Γ21 + Γ12)− iω′

)(
γ21 − iω′′

ω2
21 + (γ21 − iω′′)2

)
Ẽ(ω′′)Ẽ(ω′ − ω′′)Ẽ(ω − ω′)dω′′dω′,

which is equivalent to

ρ̃
(3)
21 (ω) = 4

(
i

}

)3
M3

21(ρeq11 − ρ
eq
22) R̃(ω)

i(ω21 − ω) + γ21
(S34)

after introducing the lineshape distortion function R̃(ω) as done in the main text.

S4. CONTRIBUTION OF HOLE

Similar to the corresponding section from the main text, we want to shed some light
on the transport of photogenerated holes in the nanostructures discussed. Given the
different effective mass and deformation potential, this results in changed energy levels
of the states as well as a differing initial population distribution from the Fermi-Dirac
statistic and different up- and down-scattering rates. The frequency dependent mobility
spectra for a hole in nanorods of different lengths and temperatures are shown in FIG. S1
analogously to the main text. A more complete picture is shown in FIG. S2 taking the
sum of the electron contributions as presented in the main text and the hole contributions
as seen in FIG. S1. Since the electron resonances are at a higher frequencies than those of
the hole, FIG. S2 (a) and (d) for L = 6 nm remain almost unchanged compared to FIG.
1 (a) and (d). Similarly, FIG. S2 (c) and (f) for L = 40 nm only add a minor change to
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the electron mobility while the hole contribution stands out for FIG. S2 (b) and (e), as
there is less overlap between the peaks.

Because the hole mobility contributions are typically found at lower frequencies, their
impact on the total absolute mobility is more prone to being reduced due to the quantum
mechanical equilibration current which suppresses the mobility at low frequencies [13].
Since only four states have been considered in this numerical model also for holes, meant
to focus on the field-dependence of the THz mobility, the results presented here have
to be considered approximations in the case of holes. Alternative models using Kubo-
Greenwood based approaches partially address this problem are [14] and [12], however to
the detriment of being limited to the linear transport regime. The consideration of holes
becomes increasingly relevant for small nanostructures, especially at lower temperatures,
as electron transition energies move outside the typically investigated low (0-3) THz range
in experiments. However, we would like to point out that the intention of our paper is
to introduce the methodology of nonlinear charge transport simulation on a quantum
mechanical basis with a focus on electron charge carriers.
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