A systematic theoretical study of CO₂ hydrogenation towards methanol on Cu-based bimetallic catalysts:

Role of CHO&CH₃OH descriptor in thermodynamic analysis

Huang Qin, Hai Zhang^{*}, Kunmin Wu, Xingzi Wang, Weidong Fan

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

^{*} Corresponding author. Telephone: 021-34206052 E-mail: zhanghai@sjtu.edu.cn

Evaluation details

To assess the predictive performance, three metrics were employed, that was, the Pearson correlation coefficient (*PCC*), determination coefficient (R^2) and mean-average error (*MAE*). Of these, *PCC* was mathematically represented by Eq. (1):

$$PCC = \frac{Cov(x,y)}{\sigma_x \sigma_y} \tag{1}$$

where Cov(X,Y) signified the covariance between variables x and y, while σ_x and σ_y were their respective standard deviations. R^2 was introduced to evaluate the fitting degree of the learning model, as recorded in Eq. (2):

$$R^{2} = \frac{\sum_{i=1}^{n} (y_{i} - f_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(2)

where y_i and f_i referred to the true and predicted values, respectively. \bar{y} denoted the mean of the true values, and a higher value of R^2 indicated a stronger fit of learning models. Besides that, *MAE*, an essential indicator for quantifying the disparity between predicted and actual values, was formulated in Eq. (3):

$$MAE = \frac{\sum_{i=1}^{n} |y_i - f_i|}{n}$$
(3)

Computational details of SISSO

!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
ptype=1
ntask=1
task_weighting=1
scmt=.false.
desc_dim=10
nsample=114
!nsample=(n1,n2,)
restart=0
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
nsf= 7
ops='(+)(-)(*)(/)'
fcomplexity=2
!funit=(1:2)
fmax_min=1e-6
fmax_max=1e6
nf_sis=20
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
method_so='L0'
n1110= 1
fit_intercept=.true.
metric='RMSE'
nmodels=300
isconvex=(1,1)
bwidth=0.001

Input file of SISSO

1. Figure captions

Fig. S1. Geometric structures of 1×1×2 crystal configuration for (a) pure Cu, (b) Au-Cu, (c) Ni-Cu, (d) Pd-

Cu,	(e)	Pt-Cu	and	(f)	Zn-Cu.

(a) H

(b) O

(c) H₂

(d) OH

(h) CHO

(f) CO

(i) bi-HCOO

(l) trans-COOH

(o) HCOOH

(g) CO₂

(j) mono-H₂CO

(m) cis-COOH

(k) bi-H₂CO

(n) H₂COO

(p) CH₃O

(q) CH₂OH

(r) CH₃OH

(s) CHOH

Fig. S2. Optimal configurations of reaction intermediates adsorbed on Cu substrate, containing (a) H*, (b) O*, (c) H₂*, (d) OH*, (e) H₂O*, (f) CO*, (g) CO₂*, (h) CHO*, (i) bi-HCOO*, (j) mono-H₂CO*, (k) bi-H₂CO*, (l) trans-COOH*, (m) cis-COOH*, (n) H₂COO*, (o) HCOOH*, (p) CH₃O*, (q) CH₂OH*, (r) CH₃OH* and (s) CHOH.

(a) H

(b) O

(c) H₂

(d) OH

(e) H₂O

(f) CO

(g) CO₂

(h) CHO

(i) bi-HCOO

(j) mono-H₂CO

(m) cis-COOH

(k) bi-H₂CO

(n) H₂COO

(1) trans-COOH

(o) HCOOH

(s) CHOH

Fig. S3. Optimal configurations of reaction intermediates adsorbed on Au-Cu substrate, containing (a) H*, (b) O^* , (c) H_2^* , (d) OH^* , (e) H_2O^* , (f) CO^* , (g) CO_2^* , (h) CHO^* , (i) bi-HCOO*, (j) mono-H₂CO*, (k) bi-H₂CO*, (l) trans-COOH*, (m) cis-COOH*, (n) H₂COO*, (o) HCOOH*, (p) CH_3O^* , (q) CH_2OH^* , (r) CH_3OH^* and (s) CHOH.

(a) H

(b) O

(c) H₂

(d) OH

(e) H₂O

(f) CO

(g) CO₂

(h) CHO

(i) bi-HCOO

(j) mono-H₂CO

(m) cis-COOH

(k) bi-H₂CO

(n) H₂COO

(l) trans-COOH

(o) HCOOH

(p) CH₃O

(q) CH₂OH

(r) CH₃OH

(s) CHOH

Fig. S4. Optimal configurations of reaction intermediates adsorbed on Ni-Cu substrate, containing (a) H*, (b) O*, (c) H₂*, (d) OH*, (e) H₂O*, (f) CO*, (g) CO₂*, (h) CHO*, (i) bi-HCOO*, (j) mono-H₂CO*, (k) bi-H₂CO*, (l) trans-COOH*, (m) cis-COOH*, (n) H₂COO*, (o) HCOOH*, (p) CH₃O*, (q) CH₂OH*, (r) CH₃OH* and (s) CHOH.

(a) H

(b) O

(c) H₂

(d) OH

(e) H₂O

(f) CO

(g) CO₂

(h) CHO

(i) bi-HCOO

(j) mono-H₂CO

(m) cis-COOH

(k) bi-H₂CO

(n) H₂COO

(1) trans-COOH

(o) HCOOH

(p) CH₃O

(q) CH₂OH

(r) CH₃OH

(s) CHOH

Fig. S5. Optimal configurations of reaction intermediates adsorbed on Pd-Cu substrate, containing (a) H*, (b) O^* , (c) H_2^* , (d) OH^* , (e) H_2O^* , (f) CO^* , (g) CO_2^* , (h) CHO^* , (i) bi-HCOO*, (j) mono-H₂CO*, (k) bi-H₂CO*, (l) trans-COOH*, (m) cis-COOH*, (n) H₂COO*, (o) HCOOH*, (p) CH_3O^* , (q) CH_2OH^* , (r) CH_3OH^* and (s) CHOH.

(a) H

(b) O

(c) H₂

(d) OH

(e) H₂O

(f) CO

(g) CO₂

(h) CHO

(i) bi-HCOO

(j) mono-H₂CO

(m) cis-COOH

(k) bi-H₂CO

(n) H₂COO

(l) trans-COOH

(o) HCOOH

(p) CH₃O

(q) CH₂OH

(r) CH₃OH

(s) CHOH

Fig. S6. Optimal configurations of reaction intermediates adsorbed on Pt-Cu substrate, containing (a) H*, (b) O^* , (c) H_2^* , (d) OH^* , (e) H_2O^* , (f) CO^* , (g) CO_2^* , (h) CHO^* , (i) bi-HCOO*, (j) mono-H₂CO*, (k) bi-H₂CO*, (l) trans-COOH*, (m) cis-COOH*, (n) H₂COO*, (o) HCOOH*, (p) CH_3O^* , (q) CH_2OH^* , (r) CH_3OH^* and (s) CHOH.

(a) H

(b) O

(c) H₂

(d) OH

(e) H₂O

(g) CO₂

(j) mono-H₂CO

(m) cis-COOH

(h) CHO

(k) bi-H₂CO

(n) H₂COO

(f) CO

(i) bi-HCOO

(l) trans-COOH

(o) HCOOH

(p) CH₃O

(q) CH₂OH

(r) CH₃OH

(s) CHOH

Fig. S7. Optimal configurations of reaction intermediates adsorbed on Zn-Cu substrate, containing (a) H*, (b) O^* , (c) H_2^* , (d) OH^* , (e) H_2O^* , (f) CO^* , (g) CO_2^* , (h) CHO^* , (i) bi-HCOO*, (j) mono-H₂CO*, (k) bi-H₂CO*, (l) trans-COOH*, (m) cis-COOH*, (n) H₂COO*, (o) HCOOH*, (p) CH_3O^* , (q) CH_2OH^* , (r) CH_3OH^* and (s) CHOH.

Fig. S8. Highly correlated scaling relationships of adsorption energy between different reaction intermediates (greater than 0.9) during methanol synthesis, including (a) $H_2 \sim H$, (b) $CO \sim H$, (c) $CH_2OH \sim H$, (d) bi-HCOO $\sim O$, (e) $CH_2OH \sim H_2$, (f) $H_2COO \sim OH$, (g) $CH_3O \sim OH$, (h) $HCOOH \sim H_2O$, (i) $CH_3OH \sim H_2O$, (j) $CHO \sim CO$, (k) trans-COOH $\sim CO$, (l) $HCOOH \sim CO$, (m) $CH_2OH \sim CO$, (n) $CH_3OH \sim CO$, (o) $bi-H_2CO \sim CHO$, (p) trans-COOH $\sim CHO$, (q) $HCOOH \sim CHO$, (r) $CH_3OH \sim CHO$, (s) trans-COOH $\sim bi-H_2CO$, (t) cis-COOH $\sim bi-H_2CO$, (v) $CH_2OH \sim trans-COOH$, (w) $CH_3O \sim H_2COO$ and (x) $CH_3OH \sim HCOOH$.

2. Table captions

Table S1. Summary of determination coefficients for adsorption energy between different intermediate descriptors on Cu-based substrates.

Intermediat e Pairing	R ²	Intermediat e Pairing	R ²	Intermediat e Pairing	R ²	Intermediat e Pairing	R ²	Intermediat e Pairing	R ²	Intermediat e Pairing	R ²	Intermediat e Pairing	R ²
$O \sim H$	0.16	$\rm H_2 \sim O$	0.06	$OH \sim H_2$	0.03	$\rm H_2O\sim OH$	0.13	$CO \sim H_2O$	0.79	$CO_2 \sim CO$	0.77	$\rm CHO \sim \rm CO_2$	0.87
$H_2 \sim H$	0.92	$OH \sim O$	0.79	$H_2O\sim H_2$	0.62	CO ~ OH	0.16	$CO_2 \sim H_2O$	0.88	CHO ~ CO	0.95	bi-HCOO ~ CO ₂	0.56
$OH \sim H$	0.11	$\rm H_2O\sim O$	0.40	$CO \sim H_2$	0.88	$\mathrm{CO}_2\sim\mathrm{OH}$	0.27	$CHO \sim H_2O$	0.80	bi-HCOO ~ CO	0.29	$\begin{array}{l} mono\text{-}H_2CO\\ \sim CO_2 \end{array}$	0.87
$H_2O\sim H$	0.70	CO ~ 0	0.24	$\mathrm{CO}_2 \sim \mathrm{H}_2$	0.55	CHO ~ OH	0.32	bi-HCOO ~ H ₂ O	0.38	mono-H ₂ CO ~ CO	0.61	bi-H ₂ CO ~ CO ₂	0.82
CO ~ H	0.94	$CO_2 \sim O$	0.51	$CHO \sim H_2$	0.78	bi-HCOO ~ OH	0.78	$\begin{array}{l} mono\text{-}H_2CO\\ \sim H_2O \end{array}$	0.73	bi-H ₂ CO ~ CO	0.88	trans-COOH $\sim CO_2$	0.83
$\mathrm{CO}_2 \sim \mathrm{H}$	0.60	CHO~O	0.41	bi-HCOO ~ H_2	0.06	mono-H ₂ CO ~ OH	0.08	bi-H ₂ CO ~ H ₂ O	0.81	trans-COOH ~ CO	0.93	cis-COOH \sim CO ₂	0.83
CHO ~ H	0.86	bi-HCOO ~ O	0.94	$\begin{array}{l} \text{mono-H}_2\text{CO} \\ \sim \text{H}_2 \end{array}$	0.41	bi-H ₂ CO ~ OH	0.41	trans-COOH $\sim H_2O$	0.77	cis-COOH ~ CO	0.71	$\begin{array}{c} H_2COO \sim \\ CO_2 \end{array}$	0.23
bi-HCOO ~ H	0.17	$\begin{array}{l} mono\text{-}H_2CO\\ \sim O \end{array}$	0.27	bi-H ₂ CO ~ H ₂	0.64	trans-COOH ~ OH	0.33	cis-COOH ~ H ₂ O	0.69	H ₂ COO ~ CO	0.12	HCOOH ~ CO ₂	0.88
mono-H₂CO ∼ H	0.39	$bi\text{-}H_2CO\sim O$	0.56	trans-COOH $\sim H_2$	0.80	cis-COOH ~ OH	0.63	$\begin{array}{c} H_2COO \sim \\ H_2O \end{array}$	0.10	HCOOH ~ CO	0.92	$\rm CH_3O \sim \rm CO_2$	0.35
$bi-H_2CO \sim H$	0.81	trans-COOH ~ O	0.40	cis-COOH \sim H ₂	0.48	H ₂ COO ~ OH	0.99	HCOOH ~ H ₂ O	0.94	$\rm CH_3O \sim CO$	0.20	$\begin{array}{c} CH_2OH \sim \\ CO_2 \end{array}$	0.62
trans-COOH ~ H	0.87	cis-COOH ~ O	0.73	$\rm H_2COO \sim H_2$	0.02	HCOOH ~ OH	0.13	$CH_{3}O \sim H_{2}O$	0.18	CH ₂ OH ~ CO	0.92	$CH_{3}OH \sim CO_{2}$	0.88
cis-COOH ~ H	0.61	$\rm H_2COO \sim O$	0.78	HCOOH ~ H ₂	0.73	$\rm CH_3O \sim OH$	0.99	CH ₂ OH ~ H ₂ O	0.65	CH ₃ OH ~ CO	0.91		

$\rm H_2COO \sim H$	0.09	HCOOH ~ O	0.33	$\rm CH_3O \sim H_2$	0.05	CH ₂ OH ~ OH	0.12	CH ₃ OH ~ H ₂ O	0.97	
HCOOH ~ H	0.81	$CH_{3}O \sim O$	0.84	$CH_2OH \sim H_2$	0.97	CH ₃ OH ~ OH	0.16			
$\rm CH_3O \sim H$	0.15	$\rm CH_2OH \sim O$	0.14	$\rm CH_3OH \sim H_2$	0.72					
$CH_2OH \sim H$	0.96	$CH_{3}OH \sim O$	0.38							
$\rm CH_3OH \sim H$	0.83									

Continue

Intermediate Pairing	R ²	Intermediate Pairing	R ²	Intermediate Pairing	R ²	Intermediate Pairing	R ²	Intermediate Pairing	R ²	Intermediate Pairing	R ²
bi-HCOO ~ CHO	0.46	mono-H ₂ CO ~ bi-HCOO	0.38	bi-H ₂ CO ~ mono-H ₂ CO	0.56	trans-COOH ~ bi-H ₂ CO	0.93	cis-COOH ~ trans-COOH	0.88	H ₂ COO ~ cis- COOH-	0.57
mono-H ₂ CO ~ CHO	0.64	bi-H ₂ CO ~ bi- HCOO	0.58	trans-COOH ~ mono-H ₂ CO	0.57	cis-COOH ~ bi-H ₂ CO	0.91	H ₂ COO ~ trans-COOH	0.28	HCOOH ~ cis- COOH-	0.70
bi-H ₂ CO ~ CHO	0.95	trans-COOH ~ bi-HCOO	0.43	cis-COOH ~ mono-H ₂ CO	0.51	$H_2COO \sim bi-$ H_2CO	0.36	HCOOH ~ trans-COOH	0.85	CH ₃ O ~ cis- COOH-	0.69
trans-COOH ~ CHO	0.99	cis-COOH ~ bi-HCOO	0.73	$H_2COO \sim$ mono- H_2CO	0.05	$\begin{array}{l} \text{HCOOH} \sim \text{bi-} \\ \text{H}_2\text{CO} \end{array}$	0.87	CH ₃ O ~ trans- COOH	0.39	CH ₂ OH ~ cis- COOH-	0.63
cis-COOH ~ CHO	0.88	H ₂ COO ~ bi- HCOO	0.76	$HCOOH \sim mono-H_2CO$	0.77	$CH_3O \sim bi-$ H_2CO	0.48	$CH_2OH \sim$ trans-COOH	0.90	CH ₃ OH ~ cis- COOH-	0.75
H ₂ COO ~ CHO	0.26	HCOOH ~ bi- HCOO	0.37	$CH_3O \sim mono-H_2CO$	0.13	$CH_2OH \sim bi-$ H_2CO	0.76	CH ₃ OH ~ trans-COOH	0.87		
HCOOH ~ CHO	0.90	CH ₃ O ~ bi- HCOO	0.84	CH ₂ OH ~ mono-H ₂ CO	0.41	CH ₃ OH ~ bi- H ₂ CO	0.91				

$\rm CH_3O \sim CHO$	0.38	CH ₂ OH ~ bi- HCOO	0.15	$CH_3OH \sim$ mono- H_2CO	0.70
CH ₂ OH ~ CHO	0.87	CH ₃ OH ~ bi- HCOO	0.24		
CH ₃ OH ~ CHO	0.90				

Continue

Intermediate Pairing	R ²	Intermediate Pairing	R ²	Intermediate Pairing	R ²	Intermediate Pairing	R ²
HCOOH ~ H ₂ COO	0.10	CH ₃ O ~ HCOOH	0.18	CH ₂ OH ~ CH ₃ O-	0.16	CH ₃ OH ~ CH ₂ OH	0.77
$\begin{array}{l} CH_{3}O\sim\\ H_{2}COO\end{array}$	0.98	CH ₂ OH ~ HCOOH	0.76	CH ₃ OH ~ CH ₃ O-	0.22		
$\begin{array}{l} CH_2OH \sim \\ H_2COO \end{array}$	0.09	CH3OH ~ HCOOH	0.99				
$\begin{array}{l} CH_{3}OH \sim \\ H_{2}COO \end{array}$	0.13						

Table S2. Summary of average determination coefficients for adsorption energy between dual intermediate descriptors and all intermediates involved in CO_2 hydrogenation.

IM combination	R ²	IM combination	R ²	IM combination	R ²	IM combination	R ²	IM combination	R ²	IM combination	R ²
H&H	0.61	H&O	0.68	H&H ₂	0.57	Н&ОН	0.63	H&H ₂ O	0.66	Н&СО	0.67
O&H	0.68	0&0	0.50	O&H ₂	0.74	O&OH	0.48	O&H ₂ O	0.57	O&CO	0.74
H_2 &H	0.57	H ₂ &O	0.74	H_2 & H_2	0.54	H ₂ &OH	0.68	H_2 & H_2O	0.59	H2&CO	0.63
OH&H	0.63	OH&O	0.48	OH&H ₂	0.68	OH&OH	0.41	OH&H ₂ O	0.55	OH&CO	0.72
H ₂ O&H	0.66	H ₂ O&O	0.57	$H_2O\&H_2$	0.59	H ₂ O&OH	0.55	H ₂ O&H ₂ O	0.64	H2O&CO	0.69
CO&H	0.67	CO&O	0.74	CO&H ₂	0.63	CO&OH	0.72	CO&H ₂ O	0.69	CO&CO	0.68
CO ₂ &H	0.73	CO ₂ &O	0.65	CO_2 &H ₂	0.67	CO ₂ &OH	0.67	CO ₂ &H ₂ O	0.69	CO ₂ &CO	0.72
CHO&H	0.71	CHO&O	0.72	CHO&H ₂	0.66	CHO&OH	0.70	CHO&H ₂ O	0.74	CHO&CO	0.71
bi-HCOO&H	0.71	bi-HCOO&O	0.51	bi-HCOO&H ₂	0.74	bi-HCOO&OH	0.49	bi-HCOO&H ₂ O	0.60	bi-HCOO&CO	0.74
mono-H ₂ CO&H	0.68	mono-H ₂ CO&O	0.59	mono-H ₂ CO&H ₂	0.61	mono-H ₂ CO&OH	0.59	mono-H ₂ CO&H ₂ O	0.59	mono-H ₂ CO&CO	0.69
bi-H ₂ CO&H	0.72	bi-H ₂ CO&O	0.68	bi-H ₂ CO&H ₂	0.68	bi-H ₂ CO&OH	0.67	bi-H ₂ CO&H ₂ O	0.74	bi-H ₂ CO&CO	0.72
trans-COOH&H	0.70	trans-COOH&O	0.72	trans-COOH&H ₂	0.65	trans-COOH&OH	0.69	trans-COOH&H ₂ O	0.73	trans-COOH&CO	0.71
cis-COOH&H	0.74	cis-COOH&O	0.64	cis-COOH&H ₂	0.70	cis-COOH&OH	0.62	cis-COOH&H ₂ O	0.74	cis-COOH&CO	0.74
H ₂ COO&H	0.53	H ₂ COO&O	0.45	$H_2COO\&H_2$	0.65	H ₂ COO&OH	0.39	H ₂ COO&H ₂ O	0.46	H ₂ COO&CO	0.67
HCOOH&H	0.68	HCOOH&O	0.66	HCOOH&H ₂	0.62	HCOOH&OH	0.67	HCOOH&H ₂ O	0.68	HCOOH&CO	0.69

CH ₃ O&H	0.67	CH ₃ O&O	0.	50 CH ₃ O&H ₂	0.69	CH ₃ O&OH	0.43	CH ₃ O&H ₂ O	0.59	CH ₃ O&CO	0.73
CH ₂ OH&H	0.61	CH ₂ OH&O	0.	73 CH ₂ OH&H ₂	0.57	CH ₂ OH&OH	0.66	CH ₂ OH&H ₂ O	0.65	CH ₂ OH&CO	0.66
Continue											
IM combination	R ²	IM combination	R ²	IM combination	R ²	IM combination	R ²	IM combination	R ²	IM combination	R ²
H&CO ₂	0.73	Н&СНО	0.71	H&bi-HCOO	0.71	H&mono-H ₂ CO	0.68	H&bi-H ₂ CO	0.72	H&trans-COOH	0.70
O&CO ₂	0.65	O&CHO	0.72	O&bi-HCOO	0.51	O&mono-H ₂ CO	0.59	O&bi-H ₂ CO	0.68	O&trans-COOH	0.72
H_2 &CO ₂	0.67	H ₂ &CHO	0.66	H ₂ &bi-HCOO	0.74	H ₂ &mono-H ₂ CO	0.61	H ₂ &bi-H ₂ CO	0.68	H ₂ &trans-COOH	0.65
OH&CO ₂	0.67	OH&CHO	0.70	OH&bi-HCOO	0.49	OH&mono-H ₂ CO	0.59	OH&bi-H ₂ CO	0.67	OH&trans-COOH	0.69
H ₂ O&CO ₂	0.69	H ₂ O&CHO	0.74	H ₂ O&bi-HCOO	0.60	H ₂ O&mono-H ₂ CO	0.59	H ₂ O&bi-H ₂ CO	0.74	H ₂ O&trans-COOH	0.73
CO&CO ₂	0.72	CO&CHO	0.71	CO&bi-HCOO	0.74	CO&mono-H ₂ CO	0.69	CO&bi-H ₂ CO	0.72	CO&trans-COOH	0.71
CO ₂ &CO ₂	0.68	CO ₂ &CHO	0.74	CO ₂ &bi-HCOO	0.66	CO ₂ &mono-H ₂ CO	0.64	CO ₂ &bi-H ₂ CO	0.74	CO ₂ &trans-COOH	0.74
CHO&CO ₂	0.74	CHO&CHO	0.73	CHO&bi-HCOO	0.73	CHO&mono-H ₂ CO	0.72	CHO&bi-H ₂ CO	0.74	CHO&trans-COOH	0.73
bi-HCOO&CO ₂	0.66	bi-HCOO&CHO	0.73	bi-HCOO&bi-HCOO	0.52	bi-HCOO&mono-H ₂ CO	0.59	bi-HCOO&bi-H ₂ CO	0.70	bi-HCOO&trans-COOH	0.73
mono-H ₂ CO&CO ₂	0.64	mono-H ₂ CO&CHO	0.72	mono-H ₂ CO&bi-HCOO	0.59	mono-H ₂ CO&mono-H ₂ CO	0.51	mono-H ₂ CO&bi-H ₂ CO	0.74	mono-H ₂ CO&trans-COOH	0.73
bi-H ₂ CO&CO ₂	0.74	bi-H ₂ CO&CHO	0.74	bi-H ₂ CO&bi-HCOO	0.70	bi-H ₂ CO&mono-H ₂ CO	0.74	bi-H ₂ CO&bi-H ₂ CO	0.74	bi-H ₂ CO&trans-COOH	0.74
trans-COOH&CO ₂	0.74	trans-COOH&CHO	0.73	trans-COOH&bi-HCOO	0.73	trans-COOH&mono-H ₂ CO	0.73	trans-COOH&bi-H ₂ CO	0.74	trans-COOH&trans-COOH	0.72
cis-COOH&CO ₂	0.73	cis-COOH&CHO	0.75	cis-COOH&bi-HCOO	0.66	cis-COOH&mono-H ₂ CO	0.73	cis-COOH&bi-H ₂ CO	0.74	cis-COOH&trans-COOH	0.74
H ₂ COO&CO ₂	0.59	H ₂ COO&CHO	0.62	H ₂ COO&bi-HCOO	0.45	H ₂ COO&mono-H ₂ CO	0.51	H ₂ COO&bi-H ₂ CO	0.59	H ₂ COO&trans-COOH	0.62
HCOOH&CO ₂	0.70	HCOOH&CHO	0.73	HCOOH&bi-HCOO	0.67	HCOOH&mono-H ₂ CO	0.64	HCOOH&bi-H ₂ CO	0.73	HCOOH&trans-COOH	0.73

CH ₃ O&CO ₂	0.68	CH ₃ O&CHO	0.71	CH ₃ O&bi-HCOO	0.50	CH ₃ O&mono-H ₂ CO	0.62	CH ₃ O&bi-H ₂ CO	0.69	CH ₃ O&trans-COOH	0.71
CH ₂ OH&CO ₂	0.71	CH ₂ OH&CHO	0.69	CH ₂ OH&bi-HCOO	0.74	CH ₂ OH&mono-H ₂ CO	0.67	CH ₂ OH&bi-H ₂ CO	0.71	CH ₂ OH&trans-COOH	0.68
Continue											

IM combination	R ²	IM combination	R ²	IM combination	R ²	IM combination	R ²	IM combination	R ²	IM combination	R ²
H&cis-COOH	0.74	H&H ₂ COO	0.54	Н&НСООН	0.67	H&CH ₃ O	0.67	H&CH ₂ OH	0.61	H&CH ₃ OH	0.66
O&cis-COOH	0.64	O&H ₂ COO	0.44	O&HCOOH	0.65	O&CH ₃ O	0.50	O&CH ₂ OH	0.73	O&CH ₃ OH	0.59
H ₂ &cis-COOH	0.70	H ₂ &H ₂ COO	0.65	H ₂ &HCOOH	0.62	H ₂ &CH ₃ O	0.69	H ₂ &CH ₂ OH	0.57	H ₂ &CH ₃ OH	0.59
OH&cis-COOH	0.62	OH&H ₂ COO	0.39	OH&HCOOH	0.67	OH&CH ₃ O	0.43	OH&CH ₂ OH	0.66	OH&CH ₃ OH	0.57
H ₂ O&cis-COOH	0.74	H ₂ O&H ₂ COO	0.46	H ₂ O&HCOOH	0.68	H ₂ O&CH ₃ O	0.59	H ₂ O&CH ₂ OH	0.65	H ₂ O&CH ₃ OH	0.67
CO&cis-COOH	0.74	CO&H ₂ COO	0.67	CO&HCOOH	0.69	CO&CH ₃ O	0.73	CO&CH ₂ OH	0.66	CO&CH ₃ OH	0.69
CO ₂ &cis-COOH	0.73	CO ₂ &H ₂ COO	0.59	CO ₂ &HCOOH	0.70	CO ₂ &CH ₃ O	0.68	CO ₂ &CH ₂ OH	0.71	CO ₂ &CH ₃ OH	0.70
CHO&cis-COOH	0.75	CHO&H ₂ COO	0.62	CHO&HCOOH	0.73	CHO&CH ₃ O	0.71	CHO&CH ₂ OH	0.69	CHO&CH₃OH	0.74
bi-HCOO&cis-COOH	0.66	bi-HCOO&H ₂ COO	0.45	bi-HCOO&HCOOH	0.67	bi-HCOO&CH ₃ O	0.50	bi-HCOO&CH ₂ OH	0.74	bi-HCOO&CH₃OH	0.62
mono-H ₂ CO&cis-COOH	0.73	mono-H ₂ CO&H ₂ COO	0.51	mono-H ₂ CO&HCOOH	0.64	mono-H ₂ CO&CH ₃ O	0.62	mono-H2CO&CH2OH	0.67	mono-H2CO&CH3OH	0.62
bi-H ₂ CO&cis-COOH	0.74	bi-H ₂ CO&H ₂ COO	0.59	bi-H ₂ CO&HCOOH	0.73	bi-H ₂ CO&CH ₃ O	0.69	bi-H ₂ CO&CH ₂ OH	0.71	bi-H ₂ CO&CH ₃ OH	0.74
trans-COOH&cis-COOH	0.74	trans-COOH&H ₂ COO	0.62	trans-COOH&HCOOH	0.73	trans-COOH&CH ₃ O	0.70	trans-COOH&CH ₂ OH	0.68	trans-COOH&CH ₃ OH	0.73
cis-COOH&cis-COOH	0.72	cis-COOH&H ₂ COO	0.55	cis-COOH&HCOOH	0.75	cis-COOH&CH ₃ O	0.64	cis-COOH&CH ₂ OH	0.72	cis-COOH&CH ₃ OH	0.74
H ₂ COO&cis-COOH	0.55	H ₂ COO&H ₂ COO	0.38	H ₂ COO&HCOOH	0.56	H ₂ COO&CH ₃ O	0.41	H ₂ COO&CH ₂ OH	0.59	H ₂ COO&CH ₃ OH	0.47
HCOOH&cis-COOH	0.75	HCOOH&H ₂ COO	0.56	НСООН&НСООН	0.68	HCOOH&CH ₃ O	0.69	HCOOH&CH ₂ OH	0.67	HCOOH&CH₃OH	0.69
CH ₃ O&cis-COOH	0.64	CH ₃ O&H ₂ COO	0.41	CH ₃ O&HCOOH	0.69	CH ₃ O&CH ₃ O	0.46	CH ₃ O&CH ₂ OH	0.69	CH ₃ O&CH ₃ OH	0.61

Main component	Paired components
bi-H ₂ CO	H ₂ O, CO ₂ , CHO, mono-H ₂ CO, trans-COOH, cis-COOH, CH ₃ OH
cis-COOH	H, H ₂ O, CO, bi-H ₂ CO, trans-COOH, CH ₃ OH
СНО	H ₂ O, CO ₂ , bi-H ₂ CO, CH ₃ OH
СО	O, bi-HCOO, cis-COOH
trans-COOH	CO ₂ , bi-H ₂ CO, cis-COOH
bi-HCOO	H_2 , CO, CH_2OH
H ₂ O	CHO, bi-H ₂ CO, cis-COOH
CO ₂	CHO, bi-H ₂ CO, trans-COOH
CH ₃ OH	CHO, bi-H ₂ CO, cis-COOH
H_2	O, bi-HCOO
0	СО
Н	cis-COOH
CH ₂ OH	bi-HCOO
mono-H ₂ CO	bi-H ₂ CO

Table S3. Summary of dual intermediate descriptors with an average determination coefficient of 0.75.

Table S4. Data statistics used in MLR for predicting thermodynamic properties research.

Substrate	Species	DFT results	EN _{IM}	Chg _{IM}	WF _{IM}	WF _{Sub}	SD _{Sub}	Chg _{IM – Sub}	BL _{IM – Sub}
	CO*	-247.03	5.99	10.26	8.961	4.398	0.13	0.26	1.97
	<i>CO</i> ₂ *	-254.22	9.43	16.07	8.875	4.399	0.06	0.07	3.46
	HCO*	-250.14	8.19	11.42	5.633	4.396	0.20	0.42	1.99
	bi-HCOO*	-258.78	11.63	17.65	4.897	4.393	0.14	0.65	1.97
	bi-H ₂ CO*	-254.19	10.39	12.75	6.187	4.395	0.27	0.75	2.10
	trans-COOH*	-257.84	11.63	17.43	6.184	4.394	0.16	0.43	1.99
	cis-COOH*	-257.93	11.63	17.49	6.794	4.395	0.21	0.49	1.99
	H_2COO^*	-262.16	13.83	19.10	7.441	4.393	0.24	1.10	1.96
	НСООН*	-261.40	13.83	18.01	6.664	4.397	0.11	0.01	2.13
	CH_3O^*	-258.47	12.59	13.57	6.031	4.395	0.16	0.57	1.96
	CH_2OH^*	-257.72	12.59	13.26	4.960	4.395	0.14	0.26	2.04
Cu	CH ₃ OH*	-262.00	14.79	14.01	6.165	4.398	0.10	0.01	2.11
Cu	(CO + H)*	-250.74	8.19	11.49	7.403	4.395	0.22	0.49	1.80
	$(CO + H_2O)*$	-261.92	13.83	18.34	6.936	4.395	0.16	0.34	2.03
	$(CO_2 + H_C)^*$	-257.97	11.63	17.33	7.608	4.396	0.14	0.33	2.65
	$(CO_2 + H_O)^*$	-257.96	11.63	17.33	7.480	4.396	0.14	0.33	2.47
	(HCO + H)*	-253.87	10.39	12.69	5.534	4.393	0.23	0.69	1.81
	(HCO + OH)*	-261.25	13.83	19.08	6.478	4.394	0.38	1.08	2.03
	$(HCO + OH + H)^*$	-265.09	16.03	19.62	6.738	4.393	0.19	0.62	1.36
	<i>(bi-HCOO + H_C)*</i>	-261.96	13.83	18.85	7.640	4.391	0.17	0.85	1.74
	(bi-HCOO + H_O)*	-262.46	13.83	18.90	7.697	4.392	0.19	0.90	1.81
	$(bi-H_2CO + H_C)^*$	-257.85	12.59	13.99	6.197	4.394	0.31	0.99	1.88
	$(bi-H_2CO + H_O)^*$	-257.37	12.59	13.96	6.182	4.394	0.29	0.96	1.81
	(bi-H ₂ CO+OH)*	-265.33	16.03	20.25	6.913	4.392	0.33	1.25	2.06

	<i>(bi-H₂CO+OH+H)</i> *	-268.83	18.23	21.49	7.179	4.391	0.37	1.49	1.92
	$(bi-H_2CO+H_2O)^*$	-268.98	18.23	20.74	6.133	4.394	0.29	0.74	2.13
	(trans-COOH+H)*	-261.55	13.83	18.69	6.194	4.392	0.21	0.69	1.82
	$(cis-COOH + H)^*$	-261.65	13.83	18.75	6.790	4.393	0.25	0.75	1.82
	$(H_2COO+H)^*$	-265.76	16.03	20.34	8.329	4.392	0.30	1.34	1.80
	<i>(HCOOH+H)*</i>	-265.17	16.03	19.30	6.631	4.395	0.17	0.30	1.88
	(CH ₃ O+H)*	-262.02	14.79	14.81	6.644	4.393	0.25	0.81	1.80
	<i>(CH₂OH+H)</i> *	-261.38	14.79	14.52	4.972	4.394	0.20	0.52	1.85
	<i>CO</i> *	-246.55	5.99	10.16	8.948	4.826	0.12	0.16	2.12
	CO_2^*	-254.01	9.43	16.06	8.901	4.825	0.04	0.06	3.66
	HCO*	-249.60	8.19	11.15	5.285	4.824	0.07	0.15	1.95
	bi-HCOO*	-258.15	11.63	17.62	7.528	4.815	0.21	0.62	1.96
	bi-H ₂ CO*	-253.48	10.39	12.12	6.161	4.821	0.12	0.12	2.48
	trans-COOH*	-257.23	11.63	17.24	6.008	4.824	0.15	0.24	2.09
	cis-COOH*	-257.19	11.63	17.33	6.364	4.821	0.09	0.33	1.94
	H_2COO^*	-260.61	13.83	18.95	7.424	4.824	0.24	0.95	2.10
	HCOOH*	-261.14	13.83	17.99	6.655	4.821	0.12	-0.01	2.14
Au-Cu	CH_3O^*	-257.66	12.59	13.54	6.168	4.820	0.39	0.54	2.01
	CH_2OH^*	-257.26	12.59	13.18	4.918	4.816	0.20	0.18	2.01
	CH ₃ OH*	-261.73	14.79	13.99	6.132	4.822	0.11	-0.01	2.13
	(CO + H)*	-250.07	8.19	11.26	7.513	4.823	0.14	0.26	1.78
	$(CO + H_2O)*$	-261.30	13.83	18.18	7.148	4.822	0.16	0.18	2.11
	$(CO_2 + H_C)$ *	-257.53	11.63	17.20	7.563	4.826	0.11	0.20	2.70
	$(CO_2 + H_O)^*$	-257.51	11.63	17.19	7.515	4.826	0.10	0.19	2.72
	(HCO + H)*	-253.10	10.39	12.30	5.126	4.825	0.13	0.30	1.83
	(HCO + OH)*	-260.22	13.83	18.67	6.184	4.822	0.16	0.67	2.03
	<i>(HCO + OH + H)*</i>	-263.89	16.03	19.55	6.751	4.823	0.14	0.55	2.44

	<i>(bi-HCOO + H_C)*</i>	-261.63	13.83	18.76	7.479	4.816	0.23	0.76	1.84
	<i>(bi-HCOO + H_O)*</i>	-261.63	13.83	18.76	7.613	4.816	0.23	0.76	1.84
	$(bi-H_2CO + H_C)*$	-257.09	12.59	13.26	6.087	4.821	0.16	0.26	1.90
	$(bi-H_2CO + H_O)^*$	-256.97	12.59	13.22	6.165	4.821	0.14	0.22	1.91
	<i>(bi-H₂CO+OH)*</i>	-264.66	16.03	19.54	19.304	4.817	0.17	0.54	1.98
	<i>(bi-H₂CO+OH+H)*</i>	-268.15	18.23	20.69	7.119	4.817	0.20	0.69	1.85
	<i>(bi-H</i> ₂ <i>CO</i> + <i>H</i> ₂ <i>O</i>)*	-268.12	18.23	20.02	5.778	4.820	0.13	0.02	2.53
	(trans-COOH+H)*	-260.75	13.83	18.39	6.036	4.824	0.17	0.39	1.90
	$(cis-COOH + H)^*$	-260.96	13.83	18.56	6.727	4.818	0.25	0.56	1.86
	$(H_2COO+H)^*$	-264.10	16.03	20.08	7.474	4.826	0.27	1.08	1.91
	(HCOOH+H)*	-264.66	16.03	19.17	6.622	4.821	0.16	0.17	1.92
	(CH ₃ O+H)*	-261.14	14.79	14.68	6.161	4.820	0.41	0.68	1.86
	<i>(CH₂OH+H)</i> *	-260.76	14.79	14.33	4.838	4.817	0.22	0.33	1.86
	CO*	-270.30	5.99	10.25	8.937	4.444	0.11	0.25	1.72
	CO_2^*	-277.38	9.43	16.61	8.412	4.441	0.19	0.61	1.98
	HCO*	-273.28	8.19	11.62	5.719	4.443	0.31	0.62	1.89
	bi-HCOO*	-281.58	11.63	17.65	7.793	4.443	0.18	0.65	1.89
	bi-H ₂ CO*	-277.17	10.39	12.47	6.217	4.441	0.21	0.47	1.84
	trans-COOH*	-280.97	11.63	17.45	6.389	4.443	0.21	0.45	1.88
Ni-Cu	cis-COOH*	-280.95	11.63	17.50	6.895	4.441	0.20	0.50	1.89
	H_2COO^*	-284.78	13.83	19.06	7.438	4.440	0.24	1.06	1.93
	HCOOH*	-284.13	13.83	18.36	6.785	4.443	0.14	0.36	2.05
	CH_3O^*	-281.00	12.59	13.54	6.057	4.443	0.14	0.54	1.94
	CH ₂ OH*	-280.48	12.59	13.24	5.089	4.444	0.20	0.24	1.99
	CH ₃ OH*	-284.46	14.79	14.01	6.130	4.445	0.10	0.01	2.03
	(CO + H)*	-274.19	8.19	11.49	7.487	4.445	0.14	0.49	1.68
	$(CO + H_2O)*$	-285.39	13.83	18.27	7.041	4.442	0.15	0.27	1.89

	$(CO_2 + H_C)$ *	-281.26	11.63	17.85	7.595	4.440	0.22	0.85	1.80
	$(CO_2 + H_O)^*$	-281.26	11.63	17.85	7.503	4.438	0.22	0.85	1.80
	<i>(HCO + H)*</i>	-278.00	10.39	12.66	5.734	4.443	0.20	0.66	1.74
	<i>(HCO + OH)*</i>	-285.74	13.83	19.03	7.210	4.439	0.26	1.03	1.83
	<i>(HCO + OH + H)*</i>	-289.43	16.03	20.24	7.144	4.438	0.30	1.24	1.79
	<i>(bi-HCOO</i> + <i>H_C)</i> *	-285.50	13.83	18.90	7.610	4.442	0.21	0.90	1.75
	<i>(bi-HCOO + H_O)*</i>	-285.50	13.83	18.90	7.629	4.441	0.21	0.90	1.75
	$(bi-H_2CO + H_C)$ *	-281.11	12.59	13.71	6.112	4.440	0.24	0.71	1.73
	$(bi-H_2CO + H_O)$ *	-281.07	12.59	13.71	6.175	4.440	0.24	0.71	1.73
	(bi-H ₂ CO+OH)*	-288.34	16.03	20.09	7.034	4.443	0.43	1.09	1.98
	(bi-H ₂ CO+OH+H)*	-292.02	18.23	21.15	6.585	4.442	0.40	1.15	1.83
	<i>(bi-H</i> ₂ <i>CO</i> + <i>H</i> ₂ <i>O</i>)*	-291.97	18.23	20.48	5.816	4.444	0.23	0.48	2.03
	(trans-COOH+H)*	-284.90	13.83	18.68	6.409	4.439	0.24	0.68	1.75
	$(cis-COOH + H)^*$	-284.87	13.83	18.74	6.055	4.436	0.23	0.74	1.75
	$(H_2COO+H)^*$	-288.75	16.03	20.30	7.415	4.436	0.27	1.30	1.78
	(HCOOH+H)*	-288.06	16.03	19.60	7.255	4.442	0.17	0.60	1.84
	(CH ₃ O+H)*	-284.98	14.79	14.79	5.929	4.442	0.18	0.79	1.78
	$(CH_2OH+H)^*$	-284.42	14.79	14.48	5.037	4.443	0.23	0.48	1.81
	<i>CO</i> *	-278.97	5.99	10.20	8.960	4.414	0.38	0.20	2.05
	CO_2^*	-285.82	9.43	16.48	8.409	4.401	0.12	0.48	2.06
	HCO*	-281.81	8.19	11.21	5.343	4.404	0.10	0.21	2.10
	bi-HCOO*	-290.14	11.63	17.65	7.637	4.399	0.20	0.65	1.96
Pd-Cu	bi-H ₂ CO*	-285.74	10.39	12.32	6.131	4.401	0.07	0.32	2.02
	trans-COOH*	-289.41	11.63	17.29	6.096	4.405	0.12	0.29	2.04
	cis-COOH*	-289.25	11.63	17.33	6.572	4.405	0.12	0.33	2.20
	H_2COO^*	-292.92	13.83	18.99	7.425	4.405	0.22	0.99	2.05
	HCOOH*	-293.01	13.83	18.21	6.587	4.401	0.07	0.21	2.09

CH_3O^*	-289.63	12.59	13.51	5.916	4.400	0.12	0.51	2.06
CH_2OH^*	-289.29	12.59	13.07	4.663	4.406	0.11	0.07	2.09
CH ₃ OH*	-293.46	14.79	14.02	6.166	4.401	0.08	0.02	2.13
(CO + H)*	-282.71	8.19	11.37	7.480	4.419	0.39	0.37	1.86
$(CO + H_2O)^*$	-293.73	13.83	18.18	7.026	4.414	0.39	0.18	2.22
$(CO_2 + H_C)$ *	-289.62	11.63	17.51	8.072	4.405	0.16	0.51	1.91
$(CO_2 + H_O)*$	-289.62	11.63	17.51	8.118	4.405	0.16	0.51	1.92
(HCO + H)*	-285.58	10.39	12.37	5.396	4.407	0.14	0.37	1.90
(HCO + OH)*	-292.86	13.83	18.91	5.891	4.408	0.38	0.91	2.07
$(HCO + OH + H)^*$	-296.41	16.03	19.77	6.765	4.402	0.23	0.77	2.14
<i>(bi-HCOO + H_C)*</i>	-293.90	13.83	18.82	7.576	4.403	0.22	0.82	1.82
(bi-HCOO + H_O)*	-293.90	13.83	18.82	7.518	4.403	0.22	0.82	1.82
$(bi-H_2CO + H_C)^*$	-289.55	12.59	13.49	6.115	4.403	0.18	0.49	1.85
$(bi-H_2CO + H_O)$ *	-289.54	12.59	13.49	6.128	4.405	0.12	0.49	1.85
$(bi-H_2CO+OH)*$	-296.65	16.03	19.80	6.679	4.399	0.22	0.80	2.12
<i>(bi-H₂CO+OH+H)</i> *	-300.17	18.23	20.93	6.672	4.405	0.24	0.93	1.96
<i>(bi-H</i> ₂ <i>CO</i> + <i>H</i> ₂ <i>O</i>)*	-300.60	18.23	20.32	5.955	4.401	0.10	0.32	2.09
(trans-COOH+H)*	-293.16	13.83	18.40	6.064	4.409	0.14	0.40	1.92
$(cis-COOH + H)^*$	-293.01	13.83	18.43	6.597	4.411	0.16	0.43	2.00
$(H_2COO+H)^*$	-296.72	16.03	20.15	7.392	4.408	0.24	1.15	1.86
<i>(HCOOH+H)</i> *	-296.75	16.03	19.41	6.584	4.403	0.15	0.41	1.91
(CH ₃ O+H)*	-293.46	14.79	14.68	5.984	4.404	0.15	0.68	1.87
$(CH_2OH+H)*$	-293.19	14.79	14.27	4.516	4.409	0.14	0.27	1.90
<i>CO</i> *	-294.36	5.99	10.19	9.011	4.894	0.38	0.19	2.04
CO_2^*	-301.01	9.43	16.44	8.539	4.875	0.08	0.44	2.02
HCO*	-297.14	8.19	11.06	5.055	4.898	0.10	0.06	1.96
bi-HCOO*	-304.90	11.63	17.61	7.627	4.856	0.21	0.61	1.94

Pt-Cu

bi-H ₂ CO*	-300.90	10.39	12.33	6.129	4.872	0.08	0.33	2.00
trans-COOH*	-304.90	11.63	17.22	6.043	4.867	0.13	0.22	2.00
cis-COOH*	-304.53	11.63	17.22	6.362	4.882	0.09	0.22	1.98
H_2COO^*	-307.87	13.83	18.91	7.398	4.880	0.25	0.91	2.04
НСООН*	-308.07	13.83	18.25	6.566	4.873	0.08	0.25	2.05
<i>CH</i> ₃ <i>O</i> *	-304.60	12.59	13.44	6.005	4.881	0.12	0.44	2.03
CH ₂ OH*	-304.81	12.59	13.02	4.764	4.867	0.09	0.02	2.08
CH ₃ OH*	-308.49	14.79	13.98	6.130	4.875	0.07	-0.03	2.08
(CO + H)*	-298.36	8.19	11.30	7.478	4.891	0.38	0.30	1.87
$(CO + H_2O)*$	-309.14	13.83	18.15	7.127	4.883	0.38	0.15	2.21
$(CO_2 + H_C)$ *	-304.79	11.63	17.45	7.527	4.881	0.13	0.45	1.80
$(CO_2 + H_0)^*$	-305.04	11.63	17.55	7.468	4.880	0.11	0.55	1.86
<i>(HCO + H)*</i>	-301.17	10.39	12.18	5.025	4.888	0.13	0.18	1.83
<i>(HCO + OH)*</i>	-307.92	13.83	18.62	4.459	4.884	0.25	0.62	2.07
(HCO + OH + H)*	-311.84	16.03	19.13	7.022	4.877	0.10	0.13	1.93
<i>(bi-HCOO</i> + <i>H_C)</i> *	-308.90	13.83	18.72	7.598	4.871	0.23	0.72	1.82
<i>(bi-HCOO</i> + <i>H_O)</i> *	-308.90	13.83	18.72	7.597	4.870	0.22	0.72	1.82
$(bi-H_2CO + H_C)*$	-304.18	12.59	13.48	6.088	4.876	0.12	0.48	1.71
(bi-H ₂ CO + H_O)*	-304.93	12.59	13.45	6.093	4.880	0.11	0.45	1.85
<i>(bi-H</i> ₂ <i>CO</i> + <i>OH</i>)*	-311.87	16.03	19.79	6.497	4.880	0.16	0.79	2.02
<i>(bi-H₂CO+OH+H)</i> *	-315.78	18.23	20.88	6.936	4.885	0.19	0.88	1.92
<i>(bi-H</i> ₂ <i>CO</i> + <i>H</i> ₂ <i>O</i>)*	-315.83	18.23	20.35	6.194	4.879	0.20	0.35	2.16
(trans-COOH+H)*	-308.90	13.83	18.33	8.254	4.881	0.14	0.33	1.85
(cis-COOH + H)*	-308.50	13.83	18.27	6.365	4.887	0.32	0.27	1.89
(H ₂ COO+H)*	-311.91	16.03	20.03	7.289	4.884	0.27	1.03	1.87
<i>(HCOOH+H)</i> *	-312.07	16.03	19.38	6.651	4.879	0.13	0.38	1.88
$(CH_3O+H)*$	-308.63	14.79	14.56	6.065	4.867	0.14	0.56	1.87

	$(CH_2OH+H)^*$	-308.84	14.79	14.15	4.850	4.887	0.13	0.15	1.88
	<i>CO</i> *	-211.41	5.99	10.19	8.978	4.479	0.52	0.19	1.84
	CO_2^*	-218.75	9.43	16.07	8.865	4.479	0.50	0.07	3.69
	HCO*	-214.58	8.19	11.46	5.677	4.465	0.56	0.46	1.99
	bi-HCOO*	-223.24	11.63	17.67	7.669	4.479	0.51	0.67	1.99
	bi-H ₂ CO*	-218.43	10.39	12.79	6.191	4.478	0.60	0.79	2.16
	trans-COOH*	-222.28	11.63	17.47	6.491	4.479	0.54	0.47	2.00
	cis-COOH*	-222.33	11.63	17.51	6.757	4.448	0.53	0.51	2.00
	H_2COO^*	-226.58	13.83	19.16	7.442	4.479	0.57	1.16	1.98
	HCOOH*	-225.80	13.83	18.03	6.602	4.466	0.50	0.03	2.28
	CH_3O^*	-222.97	12.59	13.60	6.102	4.479	0.54	0.60	1.98
	CH ₂ OH*	-222.15	12.59	13.34	5.329	4.448	0.53	0.34	2.08
	CH ₃ OH*	-226.44	14.79	14.02	6.127	4.468	0.50	0.02	2.19
7n Cu	(CO + H)*	-214.90	8.19	11.49	7.594	4.480	0.54	0.49	1.76
Zn-Cu	$(CO + H_2O)*$	-226.14	13.83	18.22	7.113	4.479	0.52	0.22	2.05
	$(CO_2 + H_C)$ *	-222.27	11.63	17.37	7.565	4.479	0.52	0.37	2.69
	$(CO_2 + H_O)^*$	-222.26	11.63	17.36	7.602	4.479	0.52	0.36	2.73
	<i>(HCO + H)*</i>	-218.09	10.39	12.76	5.627	4.464	0.58	0.76	1.84
	(HCO + OH)*	-225.32	13.83	19.02	6.436	4.479	0.65	1.02	2.05
	$(HCO + OH + H)^*$	-229.48	16.03	19.65	6.747	4.479	0.55	0.65	2.07
	<i>(bi-HCOO + H_C)</i> *	-226.76	13.83	18.95	7.496	4.479	0.54	0.95	1.84
	<i>(bi-HCOO + H_O)*</i>	-226.70	13.83	18.95	7.663	4.448	0.54	0.95	1.84
	$(bi-H_2CO + H_C)*$	H_C * -221.92 12.59 14.06 6.183 4.477 0.62 1.06	1.06	1.93					
	$(bi-H_2CO + H_O)^*$	-221.51	12.59	14.02	6.217	4.478	0.62	1.02	1.84
	<i>(bi-H</i> ₂ <i>CO</i> + <i>OH</i>)*	-229.66	16.03	20.31	6.190	4.478	0.63	1.31	2.09
	<i>(bi-H</i> ₂ <i>CO</i> + <i>OH</i> + <i>H</i>)*	-232.94	18.23	21.57	6.930	4.478	0.67	1.57	1.96
	<i>(bi-H</i> ₂ <i>CO</i> + <i>H</i> ₂ <i>O</i>)*	-233.18	18.23	20.82	5.998	4.477	0.62	0.82	2.19

(trans-COOH+H)*	-225.51	13.83	18.80	6.244	4.478	0.56	0.80	1.80
$(cis-COOH + H)^*$	-225.82	13.83	18.79	6.741	4.478	0.56	0.79	1.84
$(H_2COO+H)^*$	-229.99	16.03	20.45	7.486	4.479	0.60	1.45	1.83
<i>(HCOOH+H)</i> *	-229.34	16.03	19.33	6.615	4.464	0.53	0.33	1.96
(CH ₃ O+H)*	-226.51	14.79	14.88	6.140	4.479	0.56	0.88	1.83
$(CH_2OH+H)*$	-225.62	14.79	14.63	5.383	4.479	0.56	0.63	1.88

Substrate	Species	SISSO ₁	SISSO ₂	SISSO ₃	SISSO ₄	SISSO ₅	SISSO ₆	SISSO7	SISSO ₈
	<i>CO</i> *	0.58	0.004	51.71	55.64	38.02	6.68	8.51	-268.52
	CO_2^*	0.84	0.001	80.23	87.15	66.94	11.76	15.16	-264.80
	HCO*	0.65	0.009	44.15	48.12	38.38	6.74	8.53	-261.95
	bi-H ₂ CO*	0.75	0.017	62.18	66.39	40.66	7.15	8.98	-259.94
	trans-COOH*	0.61	0.006	69.93	73.91	38.41	6.75	8.58	-271.69
	cis-COOH*	0.66	0.010	77.02	81.01	38.49	6.76	8.55	-271.37
	CH ₂ OH*	0.61	0.005	60.40	64.49	39.43	6.93	8.83	-269.23
	CH ₃ OH*	0.58	0.002	89.07	93.29	40.87	7.18	9.19	-280.12
	(CO + H)*	0.63	0.011	58.83	62.43	34.85	6.13	7.71	-266.56
Си	$(CO + H_2O)$ *	0.62	0.006	93.90	97.95	39.20	6.89	8.76	-279.30
	$(CO_2 + H_C)$ *	0.74	0.004	85.83	91.13	51.23	9.00	11.52	-271.64
	$(CO_2 + H_O)^*$	0.70	0.004	84.52	89.46	47.75	8.39	10.72	-273.02
	(HCO + H)*	0.64	0.012	55.68	59.31	35.01	6.15	7.74	-263.93
	$(bi-H_2CO + H_C)^*$	0.73	0.021	76.14	79.90	36.32	6.39	7.96	-262.58
	$(bi-H_2CO + H_O)^*$	0.70	0.019	76.02	79.64	34.98	6.15	7.67	-264.82
	<i>(bi-H</i> ₂ <i>CO</i> + <i>H</i> ₂ <i>O</i>)*	0.77	0.019	109.67	113.94	41.21	7.24	9.09	-272.86
	(trans-COOH+H)*	0.62	0.010	83.85	87.48	35.03	6.16	7.77	-274.47
	(cis-COOH + H)*	0.66	0.014	92.09	95.72	35.08	6.17	7.74	-274.27
	(CH ₂ OH+H)*	0.62	0.009	71.69	75.38	35.62	6.26	7.91	-271.56
	<i>CO</i> *	0.56	0.003	51.48	55.72	49.34	8.11	10.11	-255.14
	<i>CO</i> ₂ *	0.80	0.000	80.28	87.60	85.21	14.00	17.62	-239.47
Au-Cu	HCO*	0.47	0.001	41.33	45.23	45.38	7.46	9.34	-254.21
	<i>bi-H</i> ₂ CO*	0.64	0.003	61.53	66.50	57.70	9.49	11.85	-248.82
	trans-COOH*	0.58	0.005	67.78	71.97	48.72	8.01	9.95	-258.43

Table S5. Data statistics used in SISSO method for predicting thermodynamic properties research.

	cis-COOH*	0.50	0.002	72.07	75.96	45.16	7.42	9.28	-262.30
	CH_2OH^*	0.62	0.009	59.91	63.92	46.53	7.65	9.46	-250.09
	CH ₃ OH*	0.56	0.003	88.56	92.82	49.57	8.15	10.17	-264.45
	(CO + H)*	0.51	0.004	59.75	63.31	41.41	6.81	8.44	-260.86
	$(CO + H_2O)*$	0.60	0.006	96.75	100.97	49.07	8.07	10.01	-265.67
	$(CO_2 + H_C)*$	0.67	0.003	85.26	90.66	62.85	10.33	12.91	-256.85
	$(CO_2 + H_O)*$	0.67	0.002	84.68	90.12	63.41	10.42	13.03	-256.47
	(HCO + H)*	0.51	0.004	51.43	55.09	42.61	7.00	8.70	-258.78
	<i>(bi-H</i> ₂ <i>CO</i> + <i>H</i> _ <i>C)</i> *	0.56	0.006	74.73	78.54	44.18	7.26	9.00	-261.65
	$(bi-H_2CO + H_O)^*$	0.53	0.004	75.71	79.53	44.40	7.30	9.07	-262.92
	<i>(bi-H</i> ₂ <i>CO</i> + <i>H</i> ₂ <i>O</i>)*	0.66	0.004	102.81	107.86	58.69	9.65	12.04	-260.32
	(trans-COOH+H)*	0.56	0.006	81.58	85.38	44.20	7.26	8.99	-265.30
	(cis-COOH + H)*	0.64	0.013	91.18	94.89	43.15	7.10	8.71	-260.56
	<i>(CH₂OH+H)</i> *	0.61	0.010	69.69	73.42	43.19	7.11	8.74	-255.21
	<i>CO</i> *	0.50	0.003	51.82	55.25	33.91	5.91	7.52	-278.18
	CO_2^*	0.64	0.009	77.34	81.31	39.12	6.83	8.61	-280.56
	HCO*	0.74	0.022	44.94	48.73	37.40	6.52	8.11	-260.16
	bi-H ₂ CO*	0.62	0.010	62.76	66.43	36.24	6.32	7.95	-275.88
	trans-COOH*	0.64	0.010	72.42	76.19	37.14	6.48	8.15	-278.35
	cis-COOH*	0.63	0.009	78.30	82.07	37.19	6.49	8.17	-280.88
Ni-Cu	CH_2OH^*	0.64	0.009	62.08	66.06	39.22	6.84	8.63	-275.73
	CH ₃ OH*	0.55	0.002	88.63	92.70	40.17	7.00	8.94	-288.35
	(CO + H)*	0.52	0.005	59.64	62.99	33.10	5.77	7.30	-279.72
	$(CO + H_2O)*$	0.58	0.005	95.49	99.27	37.26	6.50	8.23	-289.35
	$(CO_2 + H_C)^*$	0.63	0.011	86.53	90.13	35.53	6.20	7.78	-282.85
	$(CO_2 + H_0)^*$	0.63	0.011	85.46	89.06	35.51	6.20	7.78	-282.37
	<i>(HCO + H)*</i>	0.60	0.009	57.84	61.31	34.26	5.98	7.51	-275.27

	$(bi-H_2CO + H_C)*$	0.63	0.013	75.22	78.68	34.07	5.95	7.43	-277.88
	$(bi-H_2CO + H_O)^*$	0.63	0.013	76.01	79.47	34.12	5.95	7.44	-278.21
	(<i>bi-H</i> ₂ <i>CO</i> + <i>H</i> ₂ <i>O</i>)*	0.69	0.012	103.99	108.06	40.13	7.00	8.80	-286.16
	(trans-COOH+H)*	0.64	0.013	86.88	90.39	34.53	6.03	7.54	-281.34
	(cis-COOH + H)*	0.63	0.012	81.99	85.50	34.53	6.03	7.55	-280.27
	(CH ₂ OH+H)*	0.63	0.012	72.69	76.30	35.67	6.22	7.80	-277.97
	<i>CO</i> *	0.84	0.033	51.62	55.72	39.86	6.99	8.65	-248.37
	CO_2*	0.59	0.003	77.24	81.36	39.93	7.01	8.95	-277.06
	HCO*	0.58	0.002	41.66	45.86	40.73	7.15	9.15	-266.61
	<i>bi-H</i> ₂ <i>CO</i> *	0.53	0.001	61.68	65.72	39.17	6.88	8.83	-273.51
	trans-COOH*	0.58	0.003	68.86	72.93	39.51	6.93	8.85	-275.67
	cis-COOH*	0.62	0.003	74.24	78.63	42.59	7.47	9.55	-276.06
	CH_2OH^*	0.58	0.003	56.61	60.80	40.62	7.13	9.11	-271.87
	CH ₃ OH*	0.57	0.002	89.07	93.32	41.24	7.24	9.29	-281.19
	(CO + H)*	0.82	0.035	59.40	63.13	36.40	6.37	7.84	-250.90
Pd-Cu	$(CO + H_2O)*$	0.89	0.034	94.95	99.39	43.23	7.58	9.41	-259.29
	$(CO_2 + H_C)^*$	0.60	0.006	91.96	95.79	37.15	6.52	8.27	-282.48
	$(CO_2 + H_O)^*$	0.60	0.006	92.50	96.33	37.16	6.52	8.27	-282.58
	(HCO + H)*	0.57	0.004	54.16	57.97	36.92	6.48	8.24	-272.10
	$(bi-H_2CO + H_C)^*$	0.60	0.008	75.14	78.84	35.88	6.30	7.97	-275.99
	$(bi-H_2CO + H_O)^*$	0.54	0.003	75.30	79.00	35.91	6.30	8.03	-279.51
	(<i>bi-H</i> ₂ <i>CO</i> + <i>H</i> ₂ <i>O</i>)*	0.58	0.002	106.47	110.65	40.53	7.12	9.10	-286.68
	(trans-COOH+H)*	0.58	0.005	81.95	85.78	37.29	6.54	8.32	-281.06
	(cis-COOH + H)*	0.61	0.005	89.24	93.23	38.87	6.81	8.66	-282.59
	<i>(CH₂OH+H)</i> *	0.57	0.005	64.89	68.69	36.95	6.48	8.24	-275.80
Dt C.	CO*	0.80	0.029	51.93	56.02	48.93	7.96	9.62	-294.73
гі-СИ	CO_2*	0.50	0.001	78.51	82.54	47.95	7.82	9.75	-304.58

	HCO*	0.50	0.002	39.44	43.36	47.00	7.64	9.49	-315.44
	bi-H ₂ CO*	0.49	0.001	61.68	65.68	47.54	7.76	9.68	-296.24
	trans-COOH*	0.54	0.003	68.28	72.28	47.46	7.75	9.63	-292.84
	cis-COOH*	0.50	0.002	72.01	75.97	47.29	7.70	9.59	-309.19
	CH_2OH^*	0.52	0.002	57.90	62.06	49.22	8.04	10.02	-290.18
	CH ₃ OH*	0.50	0.001	88.58	92.75	49.50	8.07	10.09	-308.15
	(CO + H)*	0.77	0.030	59.37	63.12	44.78	7.28	8.77	-291.20
	$(CO + H_2O)*$	0.84	0.030	96.35	100.78	52.73	8.59	10.41	-297.32
	$(CO_2 + H_C)$ *	0.50	0.004	85.74	89.34	42.94	7.00	8.66	-310.50
	$(CO_2 + H_O)^*$	0.49	0.002	85.00	88.71	44.24	7.21	8.96	-310.29
	(HCO + H)*	0.50	0.003	50.38	54.04	43.78	7.12	8.83	-306.14
	$(bi-H_2CO + H_C)^*$	0.47	0.003	74.94	78.36	40.69	6.63	8.22	-302.53
	$(bi-H_2CO + H_O)^*$	0.49	0.002	74.86	78.56	44.04	7.18	8.91	-306.98
	<i>(bi-H</i> ₂ <i>CO</i> + <i>H</i> ₂ <i>O</i>)*	0.65	0.009	110.76	115.08	51.44	8.38	10.34	-315.15
	(trans-COOH+H)*	0.52	0.004	112.30	116.00	44.10	7.18	8.89	-319.00
	(cis-COOH + H)*	0.71	0.022	86.14	89.92	45.19	7.35	8.92	-303.30
	(CH ₂ OH+H)*	0.52	0.003	69.85	73.62	45.00	7.32	9.08	-311.85
	<i>CO</i> *	0.93	0.060	51.94	55.62	36.93	6.40	7.73	-227.95
	CO_2^*	1.32	0.055	79.91	87.28	73.94	12.82	16.01	-228.02
	HCO*	1.00	0.070	44.51	48.48	39.62	6.89	8.32	-216.47
	bi-H ₂ CO*	1.09	0.081	62.16	66.48	43.31	7.51	9.07	-209.14
7. 6.	trans-COOH*	0.98	0.064	73.49	77.49	40.18	6.97	8.44	-229.77
zn-cu	cis-COOH*	0.98	0.064	76.58	80.59	39.64	6.91	8.38	-232.26
	CH_2OH^*	1.00	0.064	65.01	69.17	41.19	7.18	8.73	-227.79
	CH ₃ OH*	0.99	0.057	88.43	92.81	43.74	7.60	9.29	-240.75
	(CO + H)*	0.93	0.065	60.43	63.96	35.39	6.14	7.36	-225.99
	$(CO + H_2O)*$	0.98	0.060	96.32	100.42	41.11	7.13	8.66	-240.03

$(CO_2 + H_C)$ *	1.12	0.061	85.29	90.67	54.02	9.37	11.54	-231.23
$(CO_2 + H_0)^*$	1.13	0.061	85.68	91.15	54.85	9.51	11.72	-231.35
(HCO + H)*	0.99	0.074	56.63	60.30	36.61	6.36	7.63	-216.98
$(bi-H_2CO + H_C)^*$	1.05	0.086	75.91	79.77	38.67	6.71	8.02	-210.51
$(bi-H_2CO + H_O)^*$	1.03	0.087	76.43	80.11	36.94	6.41	7.62	-210.79
<i>(bi-H</i> ₂ <i>CO</i> + <i>H</i> ₂ <i>O</i>)*	1.11	0.087	107.16	111.53	43.81	7.60	9.16	-218.57
(trans-COOH+H)*	0.96	0.069	84.56	88.15	36.03	6.25	7.49	-229.96
(cis-COOH + H)*	0.97	0.070	91.38	95.07	36.98	6.41	7.70	-231.11
<i>(CH₂OH+H)</i> *	0.98	0.069	77.73	81.50	37.75	6.55	7.87	-227.31

Intermediate	CO&O	CHO&CH ₃ OH
Н	0.988	0.997
СО	0.948	0.967
CO_2	0.991	0.994
0	0.989	0.972
ОН	0.857	0.861
H ₂ O	0.986	0.979
СНО	0.995	0.997
CH ₂ O	0.745	0.741
CH ₃ O	0.328	0.387
CH ₃ OH	0.959	0.977

Table S6. Linear performance (PCC) of CO&O and CHO&CH₃OH descriptors in the data of [29].

Intermediate	CO&O	CHO&CH₃OH
Н	0.906	0.927
0	0.971	0.982
С	0.992	0.997
CO ₂	0.998	1.000
H ₂ O	0.964	0.977
СООН	0.999	1.000
НСОО	0.987	0.994
НСООН	0.985	0.993
CH ₂ OH	0.993	0.998
H ₂ COOH	0.991	0.996
CH ₃ OH	0.957	0.971

Table S7. Linear performance (PCC) of CO&O and CHO&CH₃OH descriptors in the data of [64].