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SI 1 Supplementary Figures (Fig), Tables and Equations (Eq) 

 

Table S1. Crystallographic data 

Zn0.994Co0.006 

Molecular formula C16H26N4O8Zn 

Molecule weight 467 

Crystal system Orthorhombic 

Space group Pccn 

𝑎, Å  15.2423 

𝑏, Å 9.3278 

𝑐, Å 13.0916 

𝛼, ° 90 

𝛽, ° 90 

𝛾, ° 90 

𝑉, Å3 1864.33 

Z 1 

 

 

 

Fig.S1. (a) The result of face indexing showing on a physical crystal. The markings 

represent crystallographic a-axis and b-axis respectively.  



 

Fig.S2. Powder X-ray diffraction (PXRD) patterns of Co(H2dota) (Co) and 

Zn0.994Co0.006(H2dota) (Zn0.994Co0.006). The simulated pattern (Sim.) is also shown for 

comparison. 

 

 

Fig.S3. Relative position between the crystal frame (a-axis, b-axis, c-axis) and tensor 

frames of two magnetically inequivalent Co(II) sites. The Euler transformations from 

the crystal frame to tensor frame of Co-1 and Co-2 are 𝑅̿1(−90° − 90° −

45°), 𝑅̿2(−90° − 90° 45°) respectively.  
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Fig.S4. T1 (a) and Tm (b) curves at 5 K when 𝐵0 ∥ 𝒃 . (c) Tm curves measured by 

different pulse lengths at 5 K by AWG and variation of ESEEM observed.  



 

Fig.S5. (a)-(f) T1 data (black point) measured at different temperatures at 3907 G and 

individual exponential fitting curves (wine line). (g) Temperature dependence of T1 at 

3907 G. (h) Fitting the spin relaxation mechanism.   



Table S2. T1 and Tm data at 5 K when 𝐵0 ∥ 𝒃. 

B0 / G T1 / μs Tm / ns 

3561 479.96 576.67 

3606 498.94 563.50 

3651 489.18 588.81 

3700 444.07 600.69 

3750 450.15 567.71 

3802 490.17 606.86 

3853 502.49 586.31 

3907 475.27 664.97 

 

 

Table S3. T1 data between 4-9 K at 3907 G. 

T / K T1 / μs 

4 5995.39 

5 475.27 

6 27.45 

7 4.51 

8 0.98 

9 0.24 

 

  



 

Fig.S6. (a) FFT of Rabi oscillations measured at 3907 G by a range of attenuation 

settings. (b) Rabi oscillations of the single crystal sample measured at different fields 

when 𝐵0 ∥ 𝒃, 𝐵1 ∥ 𝒂 at 5 K, 0 dB. (c) FFT of (b). Black and grey solid lines correspond 

to Rabi frequencies and 1H Larmor frequencies respectively.  



 

Fig.S7. EDFS of Zn0.994Co0.006 with internal standard TEMPO at 5 K, 0 dB when 𝐵0 ∥

𝒃. The absolute values of experimental B1 and geff are calibrated by the peak with wine 

mark. The Rabi oscillations of Zn0.994Co0.006 without specific description of B0 field in 

Fig.S8-9 are measured on the transition with blue mark.  

 

 

𝐵1 =
𝛺𝑇𝐸𝑀𝑃𝑂

𝜇𝐵𝑔𝑇𝐸𝑀𝑃𝑂

(𝐄𝐪. 𝐒𝟏 − 𝟏) 

𝑔𝑒𝑓𝑓 =
𝑔𝑇𝐸𝑀𝑃𝑂

𝛺𝑇𝐸𝑀𝑃𝑂
∗ 𝛺𝑆𝑎𝑚𝑝𝑙𝑒 (𝐄𝐪. 𝐒𝟏 − 𝟐) 

  



 

Fig.S8. Sketch of relative position between the lab frame and tensor frames in 

anisotropic Rabi oscillation experiments, depicting the case 𝐵1 ∥ 𝑔𝑧 (a) and 𝐵1 ∥

𝑔𝑥,𝑦(b) respectively. The pink frame and white frame represent the tensor frames for 

Co-1 and Co-2 respectively. xL, yL, zL represent the lab frame (dark grey). zL is along 

the static magnetic field B0, xL is along microwave magnetic field B1. The blue frame 

represents crystal frame but b-axis is omitted. (c) Left: Rabi oscillations of internal 

standard TEMPO and Zn0.994Co0.006 crystal when 𝐵1 ∥ 𝑔𝑧 , 𝑔𝑥 , 𝑔𝑦 respectively. Right: 

FFT of Rabi oscillations shown on the left. 

  



 

Fig.S9. Anisotropic Rabi oscillation experiments with internal standard. (a) Rabi 

oscillations of TEMPO measured with variable rotation angle 𝛼 at 5 K, 0 dB. (b) FFT 

of (a). (c) Rabi oscillations of Zn0.994Co0.006 measured with variable rotation angle 𝛼 

at 5 K, 6 dB. (d) FFT of (c).  

  



 

Fig.S10. Calibration of experimental rotation angle 𝛼. The black line is the calculated 

variation of 𝑔1𝑒𝑓𝑓/𝑔2𝑒𝑓𝑓  with 𝛼. Matching the ratio of two Rabi frequencies in Fig.4c 

(0 dB, open circle) and Fig.S9d (6 dB, grey circle) to calibrate experimental 𝛼.  

 

 

Fig.S11. T1 (a) and Tm (b) curves at 5 K when B0 is along gy direction (π/2 = 16 ns, τ = 

260 ns). Modelling the curves with single exponential function as T1 = 457.67 μs and 

TM = 283 ns. 
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SI 2 Theoretical analysis of anisotropic Rabi oscillation (I) 

Considering a 𝑆 =
1

2
 system with  

𝐻̂0 = 𝜇𝐵𝐵⃑ 𝑔̿𝑆̂. 

Based on the model shown in Fig.4a, i.e. 𝐵0 ∥ 𝑔𝑧, g tensor should be expressed in lab 

frame as  

𝑔̿ = 𝑅̿(𝛽, 0, 0)(

𝑔𝑥 0 0
0 𝑔𝑦 0

 0 0 𝑔𝑧

) 𝑅̿†(𝛽, 0, 0) = (

𝑔𝑥𝑥 𝑔𝑥𝑦 0

𝑔𝑦𝑥 𝑔𝑦𝑦 0

0 0 𝑔𝑧𝑧

), 

where 𝑅̿(𝛽, 0, 0) and 𝑅̿†(𝛽, 0, 0) represent the Euler rotation matrixes and  

𝑔𝑧𝑧 = 𝑔𝑧  

𝑔𝑥𝑥(𝛽) = 𝑔𝑥 𝑐𝑜𝑠 𝛽2 + 𝑔𝑦 𝑠𝑖𝑛 𝛽2 (𝐄𝐪. 𝐒𝟐 − 𝟏) 

                          𝑔𝑥𝑦(𝛽) = (𝑔𝑦 − 𝑔𝑥) 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛽 (𝐄𝐪. 𝐒𝟐 − 𝟐) 

The total Hamilton of the system is 

𝐻̂ = 𝐻̂0 + 𝐻̂1(𝑡,𝛽), 

where 

𝐻̂0 = 𝜇𝐵𝐵0𝑔𝑧𝑆̂𝑧    (𝜔0 = 𝜇𝐵𝐵0𝑔𝑧), 

𝐻̂1(𝑡, 𝛽) = 𝜇𝐵𝐵1(𝑐𝑜𝑠(𝜔𝑚𝑤𝑡 + 𝜙) 0) (
𝑔𝑥𝑥(𝛽) 𝑔𝑥𝑦(𝛽)

𝑔𝑦𝑥(𝛽) 𝑔𝑦𝑦(𝛽)
)(

𝑠̂𝑥

𝑠̂𝑦
).  

We describe the system in a rotating frame with the microwave frequency 𝜔𝑚𝑤, the 

total Hamilton becomes 

𝐻̂𝑟𝑜𝑡 = 𝑅̂𝑧(𝐻̂ − 𝜔𝑚𝑤𝑆̂𝑧)𝑅̂𝑧
†
= exp(𝑖𝜔𝑚𝑤𝑡𝑆̂𝑧) (𝐻̂ − 𝜔𝑚𝑤 𝑆̂𝑧) exp(−𝑖𝜔𝑚𝑤𝑡𝑆̂𝑧). 

So 

𝐻̂𝑟𝑜𝑡

=
1

2
(

𝜔0 − 𝜔𝑚𝑤 𝜇𝐵𝐵1 𝑐𝑜𝑠(𝜔𝑡 + 𝜙) (𝑔𝑥𝑥(𝛽) − 𝑔𝑥𝑦(𝛽)𝑖)𝑒𝑖𝜔𝑡

𝜇𝐵𝐵1 𝑐𝑜𝑠(𝜔𝑡 + 𝜙) (𝑔𝑥𝑥(𝛽) + 𝑔𝑥𝑦(𝛽)𝑖)𝑒
−𝑖𝜔𝑡 −(𝜔0 − 𝜔𝑚𝑤)

). 

Base on Euler’s formula,  

𝐻̂𝑟𝑜𝑡

=
1

2
(

𝜔0 − 𝜔𝑚𝑤 𝜇𝐵𝐵1(𝑔𝑥𝑥(𝛽) − 𝑔𝑥𝑦(𝛽)𝑖)[𝑒
−𝑖𝜙 + 𝑒𝑖(2𝜔𝑡+𝜙)]

𝜇𝐵𝐵1(𝑔𝑥𝑥(𝛽) + 𝑔𝑥𝑦(𝛽)𝑖)[𝑒
𝑖𝜙 + 𝑒−𝑖(2𝜔𝑡+𝜙)] −(𝜔0 − 𝜔𝑚𝑤)

). 



The terms 𝑒±𝑖(2𝜔𝑡+𝜙) can be neglected using the rotating wave approximation. Finally, 

in the resonance condition, 𝜔0 = 𝜔𝑚𝑤, and the total Hamilton can be expressed as 

𝐻̂𝑟𝑜𝑡 =
𝜇𝐵𝐵1

2
(

0 (𝑔𝑥𝑥(𝛽) − 𝑔𝑥𝑦(𝛽)𝑖)𝑒
−𝑖𝜙

(𝑔𝑥𝑥(𝛽) + 𝑔𝑥𝑦(𝛽)𝑖)𝑒
𝑖𝜙 0

). 

For a general notation, 

𝐻̂𝑟𝑜𝑡 = 𝜇𝐵𝐵1[𝐴(𝛽,  𝜙)𝑆̂𝑥 + 𝐵(𝛽,  𝜙)𝑆̂𝑦], (𝐄𝐪. 𝐒𝟑 − 𝟏) 

where 

𝐴(𝛽,  𝜙) = 𝑔𝑥𝑥(𝛽) 𝑐𝑜𝑠 𝜙 − 𝑔𝑥𝑦(𝛽) 𝑠𝑖𝑛 𝜙 , (𝐄𝐪. 𝐒𝟑 − 𝟐) 

𝐵(𝛽,  𝜙) = 𝑔𝑥𝑥(𝛽) 𝑠𝑖𝑛 𝜙 + 𝑔𝑥𝑦(𝛽) 𝑐𝑜𝑠 𝜙 . (𝐄𝐪. 𝐒𝟑 − 𝟑) 

Therefore, the rotation of spin in Bloch sphere will be determined by: 

𝑔𝑒𝑓𝑓(𝛽) = √𝐴2 + 𝐵2 = √𝑔𝑥𝑥(𝛽)2 + 𝑔𝑥𝑦(𝛽)2, (𝐄𝐪. 𝐒𝟒 − 𝟏) 

𝛷(𝛽,𝜙) = 𝑡𝑎𝑛−1 (
𝐵

𝐴
) . (𝐄𝐪. 𝐒𝟒 − 𝟐) 

𝑔𝑒𝑓𝑓(𝛼) decides the nutation rate: 

𝛺𝑟𝑎𝑏𝑖(𝛽) = 𝜇𝐵𝐵1√𝑔𝑥𝑥(𝛽)2 + 𝑔𝑥𝑦(𝛽)2. 

  



SI 3 Theoretical analysis of anisotropic Rabi oscillation (II) 

Considering a 𝑆 =
1

2
 system with  

𝐻̂0 = 𝜇𝐵𝐵⃑ 𝑔̿𝑆̂. 

Considering a model analogue to Fig.S8, i.e. B1 coincides with a certain principal axis 

of the 𝑔̿ but B0 does not. 𝑔̿ should be expressed in lab frame as  

𝑔̿ = (

𝑔𝑥𝑥 0 0
0 𝑔𝑦𝑦 𝑔𝑦𝑧

0 𝑔𝑧𝑦 𝑔𝑧𝑧

). 

The static magnetic field Hamilton is  

𝐻̂0 = 𝜇𝐵(0 0 𝐵0) (

𝑔𝑥𝑥 0 0
0 𝑔𝑦𝑦 𝑔𝑦𝑧

0 𝑔𝑧𝑦 𝑔𝑧𝑧

)(

𝑠̂𝑥

𝑠̂𝑦

𝑠̂𝑧

) = 𝜇𝐵𝐵0(𝑔𝑧𝑦𝑠̂𝑦 + 𝑔𝑧𝑧𝑆̂𝑧). 

Diagonalize 𝐻̂0 and acquire the unitary transformation 𝑈 and Larmor frequency as 

following 

𝐻̂0
′
= 𝑈𝐻̂0𝑈

†, 

𝜔0 = 𝜇𝐵𝐵0√𝑔𝑧𝑦
2 + 𝑔𝑧𝑧

2. 

Time dependent microwave Hamiltonian can be expressed as 

𝐻̂1(𝑡) = 𝜇𝐵𝑔𝑥𝑥𝐵1 𝑐𝑜𝑠(𝜔𝑡 + 𝜙) 𝑆̂𝑥 . 

Unitary transformation 𝑈 will be used to rotate 𝐻̂1(𝑡) to eigen basis, 

𝐻̂1
′
(𝑡) = 𝑈𝐻̂1𝑈

†. 

The total Hamilton of the system is 

𝐻̂ = 𝐻̂0
′
+ 𝐻̂1

′
(𝑡). 

We describe the system in a rotating frame with the microwave frequency 𝜔𝑚𝑤, the 

total Hamilton becomes 

𝐻̂𝑟𝑜𝑡 = 𝑅̂𝑧(𝐻̂ − 𝜔𝑚𝑤 𝑆̂𝑧)𝑅̂𝑧
†
, 

where  

𝑅̂𝑧 = exp(𝑖𝜔𝑚𝑤𝑡𝑆̂𝑧). 

So 



𝐻̂𝑟𝑜𝑡 =
1

2
(

𝜔0 − 𝜔𝑚𝑤 𝜇𝐵𝐵1𝑔𝑥𝑥 𝑐𝑜𝑠(𝜔𝑡 + 𝜙) 𝑒𝑖𝜔𝑡

𝜇𝐵𝐵1𝑔𝑥𝑥 𝑐𝑜𝑠(𝜔𝑡 + 𝜙) 𝑒−𝑖𝜔𝑡 −(𝜔0 − 𝜔𝑚𝑤)
). 

Base on Euler’s formula,  

𝐻̂𝑟𝑜𝑡 =
1

2
(

𝜔0 − 𝜔𝑚𝑤 𝜇𝐵𝐵1𝑔𝑥𝑥[𝑒
−𝑖𝜙 + 𝑒𝑖(2𝜔𝑡+𝜙)]

𝜇𝐵𝐵1𝑔𝑥𝑥[𝑒
𝑖𝜙 + 𝑒−𝑖(2𝜔𝑡+𝜙)] −(𝜔0 − 𝜔𝑚𝑤)

). 

The terms 𝑒±𝑖(2𝜔𝑡+𝜙) can be neglected using the rotating wave approximation. Finally, 

in the resonance condition, 𝜔0 = 𝜔𝑚𝑤, and the total Hamilton can be expressed as 

𝐻̂𝑟𝑜𝑡 =
1

2
(

0 𝜇𝐵𝐵1𝑔𝑥𝑥𝑒
−𝑖𝜙

𝜇𝐵𝐵1𝑔𝑥𝑥𝑒
𝑖𝜙 0

). 

Diagonalize 𝐻̂𝑟𝑜𝑡 and Rabi frequency is therefore determined as 

𝛺𝑟𝑎𝑏𝑖 = 𝜇𝐵𝐵1𝑔𝑥𝑥 . 

In our case shown in Fig.S8a, 𝑔𝑥𝑥 = 𝑔𝑧, so Rabi frequency is expressed as 

𝛺𝑅𝑎𝑏𝑖 = 𝑔𝑧𝜇𝐵𝐵1. 


