Supporting Information

Angular-Resolved Rabi Oscillations of Orthorhombic Spins in a Co(II) Molecular Qubit

Yi-Qiu Liao, ${ }^{\text {a }}$ You-Chao Liu, ${ }^{\text {a }}$ Yi-Han Wang,,${ }^{\text {b }}$ Peng-Xiang Fu, ${ }^{\text {b }}$ Yi Xie, ${ }^{a}$ Song Gao, ${ }^{\text {a,b,c }}$ Ye-Xin Wang,*d Zheng Liu *c and Shang-Da Jiang *a
a. Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 511442, China. E-mail: jiangsd@scut.edu.cn
b. Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing (China).
c. Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China. E-mail: liuzh363@mail.sysu.edu.cn
d. Quantum Science Centre of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen, 518045, China. E-mail: wangyexin@quantumsc.cn

List of Supporting Information

SI 1 Supplementary Figures (Fig), Tables and Equations (Eq)

Table S1. Crystallographic data
Fig.S1. The result of face indexing showing on a physical crystal
Fig.S2. Powder X-ray diffraction
Fig.S3. Relative position between crystal frame and tensor frames
Fig.S4. T_{1} and T_{m} curves at 5 K in the g_{z} direction
Fig.S5. Temperature dependence of T_{1} at 3907 G
Table $\mathrm{S} 2 . T_{1}$ and T_{m} data at 5 K in the g_{z} direction
Table S3. T_{1} data at different temperatures at 3907 G

Fig.S6. Rabi oscillations measured at 5 K when $B_{0}\left\|\boldsymbol{b}, B_{1}\right\| \boldsymbol{a}$
Fig.S7. EDFS of the crystal with TEMPO internal standard
Eq.S1. Calculation formulas of internal standard method
Fig.S8. Rabi oscillation experiments when $B_{1} \| g_{z}, g_{x}, g_{y}$
Fig.S9. Anisotropic Rabi oscillation experiments with internal standard
Fig.S10. Calibration of experimental rotation angle α
Fig.S11. T_{1} and T_{m} curves at 5 K in the g_{y} direction

SI 2 Theoretical analysis of anisotropic Rabi oscillation (I)

SI 3 Theoretical analysis of anisotropic Rabi oscillation (II)

SI 1 Supplementary Figures (Fig), Tables and Equations (Eq)

Table S1. Crystallographic data	
$\mathbf{Z n}_{0.994} \mathbf{C o}_{0.006}$	
Molecular formula	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Zn}$
Molecule weight	467
Crystal system	Orthorhombic
Space group	Pccn
a, \AA	15.2423
b, \AA	9.3278
c, \AA	13.0916
$\alpha,{ }^{\circ}$	90
$\beta,{ }^{\circ}$	90
$\gamma,{ }^{\circ}$	90
V, \AA^{3}	1864.33
Z	1

Fig.S1. (a) The result of face indexing showing on a physical crystal. The markings represent crystallographic \boldsymbol{a}-axis and \boldsymbol{b}-axis respectively.

Fig.S2. Powder X-ray diffraction (PXRD) patterns of $\mathrm{Co}\left(\mathrm{H}_{2}\right.$ dota) (Co) and $\mathrm{Zn}_{0.994} \mathrm{Co}_{0.006}\left(\mathrm{H}_{2}\right.$ dota $)\left(\mathbf{Z n}_{0.994} \mathbf{C o}_{0.006}\right)$. The simulated pattern ($\mathbf{S i m}$.) is also shown for comparison.

Fig.S3. Relative position between the crystal frame (\boldsymbol{a}-axis, \boldsymbol{b}-axis, \boldsymbol{c}-axis) and tensor frames of two magnetically inequivalent $\mathrm{Co}(\mathrm{II})$ sites. The Euler transformations from the crystal frame to tensor frame of Co-1 and Co-2 are $\overline{\bar{R}}_{1}\left(-90^{\circ}-90^{\circ}-\right.$ $\left.45^{\circ}\right), \overline{\bar{R}}_{2}\left(-90^{\circ}-90^{\circ} 45^{\circ}\right)$ respectively.

Fig.S4. T_{1} (a) and T_{m} (b) curves at 5 K when $B_{0} \| \boldsymbol{b}$. (c) T_{m} curves measured by different pulse lengths at 5 K by AWG and variation of ESEEM observed.

Fig.S5. (a)-(f) T_{1} data (black point) measured at different temperatures at 3907 G and individual exponential fitting curves (wine line). (g) Temperature dependence of T_{1} at 3907 G. (h) Fitting the spin relaxation mechanism.

Table S2. T_{1} and T_{m} data at 5 K when $B_{0} \| \boldsymbol{b}$.

B_{0} / G	$T_{1} / \mu \mathrm{s}$	$T_{\mathrm{m}} / \mathrm{ns}$
3561	479.96	576.67
3606	498.94	563.50
3651	489.18	588.81
3700	444.07	600.69
3750	450.15	567.71
3802	490.17	606.86
3853	502.49	586.31
3907	475.27	664.97

Table S3. T_{1} data between $4-9 \mathrm{~K}$ at 3907 G .

T / K	$T_{1} / \mu \mathrm{s}$
4	5995.39
5	475.27
6	27.45
7	4.51
8	0.98
9	0.24

Fig.S6. (a) FFT of Rabi oscillations measured at 3907 G by a range of attenuation settings. (b) Rabi oscillations of the single crystal sample measured at different fields when $B_{0}\left\|\boldsymbol{b}, B_{1}\right\| \boldsymbol{a}$ at $5 \mathrm{~K}, 0 \mathrm{~dB}$. (c) FFT of (b). Black and grey solid lines correspond to Rabi frequencies and ${ }^{1} \mathrm{H}$ Larmor frequencies respectively.

Fig.S7. EDFS of $\mathbf{Z n}_{0.994} \mathbf{C 0} \mathbf{0}_{0.006}$ with internal standard TEMPO at $5 \mathrm{~K}, 0 \mathrm{~dB}$ when $B_{0} \|$ b. The absolute values of experimental B_{1} and $g_{\text {eff }}$ are calibrated by the peak with wine mark. The Rabi oscillations of $\mathbf{Z n}_{0.994} \mathbf{C o}_{0.006}$ without specific description of B_{0} field in Fig.S8-9 are measured on the transition with blue mark.

$$
\begin{gather*}
B_{1}=\frac{\Omega_{\text {TEMPO }}}{\mu_{B} g_{\text {TEMPO }}} \tag{S1-1}\\
g_{\text {eff }}=\frac{g_{\text {TEMPO }}}{\Omega_{\text {TEMPO }}} * \Omega_{\text {Sample }}
\end{gather*}
$$

(Eq. S1 - 2)

Fig.S8. Sketch of relative position between the lab frame and tensor frames in anisotropic Rabi oscillation experiments, depicting the case $B_{1} \| g_{z}$ (a) and $B_{1} \|$ $g_{x, y}(\mathrm{~b})$ respectively. The pink frame and white frame represent the tensor frames for $\mathrm{Co}-1$ and $\mathrm{Co}-2$ respectively. $x \mathrm{~L}, y \mathrm{~L}, z \mathrm{~L}$ represent the lab frame (dark grey). $z \mathrm{~L}$ is along the static magnetic field $B_{0}, x \mathrm{~L}$ is along microwave magnetic field B_{1}. The blue frame represents crystal frame but \boldsymbol{b}-axis is omitted. (c) Left: Rabi oscillations of internal standard TEMPO and $\mathbf{Z n}_{0.994} \mathbf{C o}_{0.006}$ crystal when $B_{1} \| g_{z}, g_{x}, g_{y}$ respectively. Right: FFT of Rabi oscillations shown on the left.

Fig.S9. Anisotropic Rabi oscillation experiments with internal standard. (a) Rabi oscillations of TEMPO measured with variable rotation angle α at $5 \mathrm{~K}, 0 \mathrm{~dB}$. (b) FFT of (a). (c) Rabi oscillations of $\mathbf{Z n}_{0.994} \mathbf{C} \mathbf{0}_{0.006}$ measured with variable rotation angle α at $5 \mathrm{~K}, 6 \mathrm{~dB}$. (d) FFT of (c).

Fig.S10. Calibration of experimental rotation angle α. The black line is the calculated variation of $g_{1 e f f} / g_{2 e f f}$ with α. Matching the ratio of two Rabi frequencies in Fig.4c (0 dB , open circle) and Fig.S9d (6 dB , grey circle) to calibrate experimental α.

Fig.S11. T_{1} (a) and T_{m} (b) curves at 5 K when B_{0} is along g_{y} direction $(\pi / 2=16 \mathrm{~ns}, \tau=$ 260 ns). Modelling the curves with single exponential function as $T_{1}=457.67 \mu \mathrm{~s}$ and $T_{\mathrm{M}}=283 \mathrm{~ns}$.

SI 2 Theoretical analysis of anisotropic Rabi oscillation (I)

Considering a $S=\frac{1}{2}$ system with

$$
\widehat{H}_{0}=\mu_{B} \vec{B} \overline{\bar{g}} \hat{S} .
$$

Based on the model shown in Fig.4a, i.e. $B_{0} \| g_{z}$, g tensor should be expressed in lab frame as

$$
\overline{\bar{g}}=\overline{\bar{R}}(\beta, 0,0)\left(\begin{array}{ccc}
g_{x} & 0 & 0 \\
0 & g_{y} & 0 \\
0 & 0 & g_{z}
\end{array}\right) \overline{\bar{R}}^{\dagger}(\beta, 0,0)=\left(\begin{array}{ccc}
g_{x x} & g_{x y} & 0 \\
g_{y x} & g_{y y} & 0 \\
0 & 0 & g_{z z}
\end{array}\right),
$$

where $\overline{\bar{R}}(\beta, 0,0)$ and $\overline{\bar{R}}^{\dagger}(\beta, 0,0)$ represent the Euler rotation matrixes and

$$
\begin{gather*}
g_{z z}=g_{z} \\
g_{x x}(\beta)=g_{x} \cos \beta^{2}+g_{y} \sin \beta^{2} \tag{Eq.S2-1}\\
g_{x y}(\beta)=\left(g_{y}-g_{x}\right) \cos \beta \sin \beta
\end{gather*}
$$

(Eq. S2-2)
The total Hamilton of the system is

$$
\widehat{H}=\widehat{H}_{0}+\widehat{H}_{1}(t, \beta),
$$

where

$$
\begin{gathered}
\widehat{H}_{0}=\mu_{B} B_{0} g_{z} \hat{S}_{z} \quad\left(\omega_{0}=\mu_{B} B_{0} g_{z}\right), \\
\widehat{H}_{1}(t, \beta)=\mu_{B} B_{1}\left(\cos \left(\omega_{m w} t+\phi\right)\right. \\
0)\left(\begin{array}{ll}
g_{x x}(\beta) & g_{x y}(\beta) \\
g_{y x}(\beta) & g_{y y}(\beta)
\end{array}\right)\binom{\hat{s}_{x}}{\hat{s}_{y}} .
\end{gathered}
$$

We describe the system in a rotating frame with the microwave frequency $\omega_{m w}$, the total Hamilton becomes

$$
\widehat{H}_{r o t}=\hat{R}_{z}\left(\widehat{H}-\omega_{m w} \hat{S}_{z}\right) \hat{R}_{z}^{\dagger}=\exp \left(i \omega_{m w} t \hat{S}_{z}\right)\left(\widehat{H}-\omega_{m w} \hat{S}_{z}\right) \exp \left(-i \omega_{m w} t \hat{S}_{z}\right) .
$$

So
$\widehat{H}_{r o t}$
$=\frac{1}{2}\left(\begin{array}{c}\omega_{0}-\omega_{m w} \\ \mu_{B} B_{1} \cos (\omega t+\phi)\left(g_{x x}(\beta)+g_{x y}(\beta) i\right) e^{-i \omega t}\end{array}\right.$

$$
\begin{gathered}
\left.\mu_{B} B_{1} \cos (\omega t+\phi)\left(g_{x x}(\beta)-g_{x y}(\beta) i\right) e^{i \omega t}\right) . \\
-\left(\omega_{0}-\omega_{m w}\right)
\end{gathered}
$$

Base on Euler's formula,
$\widehat{H}_{r o t}$
$=\frac{1}{2}\left(\begin{array}{c}\omega_{0}-\omega_{m w} \\ \mu_{B} B_{1}\left(g_{x x}(\beta)+g_{x y}(\beta) i\right)\left[e^{i \phi}+e^{-i(2 \omega t+\phi)}\right]\end{array}\right.$
$\left.\begin{array}{c}\mu_{B} B_{1}\left(g_{x x}(\beta)-g_{x y}(\beta) i\right)\left[e^{-i \phi}+e^{i(2 \omega t+\phi)}\right] \\ -\left(\omega_{0}-\omega_{m w}\right)\end{array}\right)$.

The terms $e^{ \pm i(2 \omega t+\phi)}$ can be neglected using the rotating wave approximation. Finally, in the resonance condition, $\omega_{0}=\omega_{m w}$, and the total Hamilton can be expressed as

$$
\widehat{H}_{\text {rot }}=\frac{\mu_{B} B_{1}}{2}\left(\begin{array}{cc}
0 & \left(g_{x x}(\beta)-g_{x y}(\beta) i\right) e^{-i \phi} \\
\left(g_{x x}(\beta)+g_{x y}(\beta) i\right) e^{i \phi} & 0
\end{array}\right) .
$$

For a general notation,

$$
\begin{equation*}
\widehat{H}_{r o t}=\mu_{B} B_{1}\left[A(\beta, \phi) \hat{S}_{x}+B(\beta, \phi) \hat{S}_{y}\right] \tag{S3-1}
\end{equation*}
$$

where

$$
\begin{align*}
& A(\beta, \phi)=g_{x x}(\beta) \cos \phi-g_{x y}(\beta) \sin \phi \tag{Eq.S3-2}\\
& B(\beta, \phi)=g_{x x}(\beta) \sin \phi+g_{x y}(\beta) \cos \phi
\end{align*}
$$

(Eq. S3-3)
Therefore, the rotation of spin in Bloch sphere will be determined by:

$$
\begin{gather*}
g_{e f f}(\beta)=\sqrt{A^{2}+B^{2}}=\sqrt{g_{x x}(\beta)^{2}+g_{x y}(\beta)^{2}} \tag{Eq.S4-1}\\
\Phi(\beta, \phi)=\tan ^{-1}\left(\frac{B}{A}\right)
\end{gather*}
$$

(Eq. S4-2)
$g_{\text {eff }}(\alpha)$ decides the nutation rate:

$$
\Omega_{r a b i}(\beta)=\mu_{B} B_{1} \sqrt{g_{x x}(\beta)^{2}+g_{x y}(\beta)^{2}}
$$

SI 3 Theoretical analysis of anisotropic Rabi oscillation (II)

Considering a $S=\frac{1}{2}$ system with

$$
\widehat{H}_{0}=\mu_{B} \vec{B} \overline{\bar{g}} \hat{S} .
$$

Considering a model analogue to Fig.S8, i.e. B_{1} coincides with a certain principal axis of the $\overline{\bar{g}}$ but B_{0} does not. $\overline{\bar{g}}$ should be expressed in lab frame as

$$
\overline{\bar{g}}=\left(\begin{array}{ccc}
g_{x x} & 0 & 0 \\
0 & g_{y y} & g_{y z} \\
0 & g_{z y} & g_{z z}
\end{array}\right) .
$$

The static magnetic field Hamilton is

$$
\widehat{H}_{0}=\mu_{B}\left(\begin{array}{lll}
0 & 0 & B_{0}
\end{array}\right)\left(\begin{array}{ccc}
g_{x x} & 0 & 0 \\
0 & g_{y y} & g_{y z} \\
0 & g_{z y} & g_{z z}
\end{array}\right)\left(\begin{array}{c}
\hat{s}_{x} \\
\hat{s}_{y} \\
\hat{s}_{z}
\end{array}\right)=\mu_{B} B_{0}\left(g_{z y} \hat{s}_{y}+g_{z z} \hat{S}_{z}\right) .
$$

Diagonalize \widehat{H}_{0} and acquire the unitary transformation U and Larmor frequency as following

$$
\begin{gathered}
\widehat{H}_{0}^{\prime}=U \widehat{H}_{0} U^{\dagger}, \\
\omega_{0}=\mu_{B} B_{0} \sqrt{g_{z y}{ }^{2}+g_{z z}{ }^{2}}
\end{gathered}
$$

Time dependent microwave Hamiltonian can be expressed as

$$
\widehat{H}_{1}(t)=\mu_{B} g_{x x} B_{1} \cos (\omega t+\phi) \hat{S}_{x} .
$$

Unitary transformation U will be used to rotate $\widehat{H}_{1}(t)$ to eigen basis,

$$
\widehat{H}_{1}^{\prime}(t)=U \widehat{H}_{1} U^{\dagger} .
$$

The total Hamilton of the system is

$$
\widehat{H}=\widehat{H}_{0}^{\prime}+\widehat{H}_{1}^{\prime}(t) .
$$

We describe the system in a rotating frame with the microwave frequency $\omega_{m w}$, the total Hamilton becomes

$$
\widehat{H}_{r o t}=\hat{R}_{z}\left(\widehat{H}-\omega_{m w} \hat{S}_{z}\right) \hat{R}_{z}^{\dagger},
$$

where

$$
\hat{R}_{z}=\exp \left(i \omega_{m w} t \hat{S}_{z}\right)
$$

So

$$
\widehat{H}_{r o t}=\frac{1}{2}\left(\begin{array}{cc}
\omega_{0}-\omega_{m w} & \mu_{B} B_{1} g_{x x} \cos (\omega t+\phi) e^{i \omega t} \\
\mu_{B} B_{1} g_{x x} \cos (\omega t+\phi) e^{-i \omega t} & -\left(\omega_{0}-\omega_{m w}\right)
\end{array}\right)
$$

Base on Euler's formula,

$$
\widehat{H}_{\text {rot }}=\frac{1}{2}\left(\begin{array}{cc}
\omega_{0}-\omega_{m w} & \mu_{B} B_{1} g_{x x}\left[e^{-i \phi}+e^{i(2 \omega t+\phi)}\right] \\
\mu_{B} B_{1} g_{x x}\left[e^{i \phi}+e^{-i(2 \omega t+\phi)}\right] & -\left(\omega_{0}-\omega_{m w}\right)
\end{array}\right)
$$

The terms $e^{ \pm i(2 \omega t+\phi)}$ can be neglected using the rotating wave approximation. Finally, in the resonance condition, $\omega_{0}=\omega_{m w}$, and the total Hamilton can be expressed as

$$
\widehat{H}_{r o t}=\frac{1}{2}\left(\begin{array}{cc}
0 & \mu_{B} B_{1} g_{x x} e^{-i \phi} \\
\mu_{B} B_{1} g_{x x} e^{i \phi} & 0
\end{array}\right) .
$$

Diagonalize $\widehat{H}_{\text {rot }}$ and Rabi frequency is therefore determined as

$$
\Omega_{r a b i}=\mu_{B} B_{1} g_{x x}
$$

In our case shown in Fig.S8a, $g_{x x}=g_{z}$, so Rabi frequency is expressed as

$$
\Omega_{R a b i}=g_{z} \mu_{B} B_{1} .
$$

