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Figure S1: a) 3D-printed sample holder and NMR 4 mm zirconia rotor. b) NMR coil. The rotor is
placed in a 5 mm diameter glass tube, which in turn fits in the solenoid.

Calculation of FID signal

The FID signals S(t) were created by adding the signals from each voxel (indexed as α), with
appropriate weighting wα using the reciprocity principle , as shown in equation (2)1. To obtain the
weights wα, the resulting signals from each pulse sequence were calculated using the evolution of the
density matrix ρ̂. The initial state is described by the spin operator Iz. The evolution during the
RF pulses is governed by the rotation operator P1, represented by ρ̂a = P1ρ̂bP

−1
1 , where ρ̂b and ρ̂a

are the density matrices before and after the pulse, respectively. The evolution between pulses is
influenced by longitudinal and transversal relaxation, with the diagonal elements of ρ̂ relaxing with
T1 = 170 ms and off-diagonal elements with T2 = 600 µs2. As the RF field B1 is not uniform inside
the metallic sample due to the skin effect, the rotation operator P1 depends on the depth of the
observed spin. The amplitude and phase of the RF field are described by3

B1 = B1,0 exp(−r/d) exp(ir/d),
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where d is the skin depth, r is the distance from the surface to the spin, and B1,0 is the amplitude
of the B1 field at the surface. The skin depth is given by4

d =

√
ρLi

πµ0µrf
,

where µ0 = 4π10−7mkgA−2 s−2 is the permeability of the vacuum, µr = 1 + χ = 1.000024 and
ρLi = 92.8 nΩm are the relative permeability and the resistivity of metallic lithium5,6, and f is the
frequency of the applied RF field. In this study, a 7 T magnetic field was assumed, corresponding to
a Larmor frequency of 116.6 MHz for 7Li, yielding a skin depth of d = 14µm.

If the RF field is aligned with the x-direction of the rotating frame, the rotation operator P1 is
given by3:

P1 = exp [−iϕ0 exp(−r/d)] exp [Ix cos(r/d) + Iy sin(r/d)] ,

where Ix and Iy are spin operator components and ϕ0 = γB1,0tp is the flip angle of the surface spins,
with tp the pulse duration.

After the evolution during the pulse sequence, the expectation values are calculated using ⟨Ix,y⟩ =
Tr [ρ̂Ix,y]. According to the reciprocity principle, the dependence of B1 with depth also influences
the detected signals. The signals obtained from depth r are described by3:

⟨Iobsx ⟩ = exp(−r/d) [⟨Ix⟩ cos(r/d)− ⟨Iy⟩ sin(r/d)]
⟨Iobsy ⟩ = exp(−r/d) [⟨Ix⟩ sin(r/d) + ⟨Iy⟩ cos(r/d)]

Finally, the weights are given by:

wα(r) = ⟨Iobsx (r)⟩+ i⟨Iobsy (r)⟩

Notice that wα are depth-dependent due to the skin effect, and also pulse sequence-dependent given
that ⟨Ix,y⟩ depend on the evolution of ρ̂ through the different rotation operations.

Microstructures shapes

Throughout this work, different shapes of microstructures have been used, varying the geometries
and within them, the parameters height, radius and density. The different microstructures, shapes
and their corresponding NMR SP sequence spectra are shown in the figure S2.

Sources of error

The main sources of error for the numerical calculations were identified as: radiofrequency field (RF)
perurbations, edge effects, and discretization of the geometry.

RF field perturbations: The RF was assumed to be uniform over the material surface, and
to decay exponentially in the direction perpendicular to the surface (implemented using the erosion
operation from the morphological image processing technique). Conversely, Illot et al. demonstrated
disruption of the RF field in the surroundings of Li microstructures by solving Maxwell’s equations
in 3D using the finite elements method7. Although this disruption suggests that the uniformity
assumption appears not to be valid, it is expected that any change in the RF field at the surface
would influence the excited regions, subsequently affecting the signal magnitudes. Our work primar-
ily focuses on the perturbation of the static field, which remains unaffected by RF perturbations.
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Figure S2: Microstructures shapes with their corresponding NMR spectra. The employed geometries
are Hex/0◦ at the left and Rand/(14◦ to 76◦) at the right.

Therefore, we can reasonably assume that the impact of RF field perturbations on the NMR spec-
trum is negligible.

Edge effects: It was observed that the microstructures in the edge region exhibit a higher ∆δ
shift compared to their center counterparts. This is because these microstructures sense a different
environment, with a lower local density. In order to avoid these effects when studying the ∆δ shifts as
a function of density, a lateral superposition was implemented. The microstructures were simulated
within a region that is approximately half of the FOV in each dimension. Once the magnetic field
perturbation is calculated, it is spatially shifted and superimposed to create a region with an area 4
times greater. To illustrate the results of this method, Figure S3 shows the simulation of a hexagonal
array of cylinders with height 10µm, radius 5µm, and density 0.4; without (S3a) and with (S3b)
lateral superposition. The figures show a slice in the xy plane at half the cylinders’ height. It is clear
that the edge effect gives an error of several ppm, as can be seen in S3a. This error is minimized
when the superposition is implemented, resulting in a more homogeneous ∆δ among cylinders.

Discretization of the geometry: The number of voxels used to represent the cylinders, yields
to errors not only in the representation of the microstructures shape, but also in the calculated
magnetic field perturbation. This is strongly related to the inherent error of the method, as shown
by Salomir et al.8 and Bouwman et al.9. In both works, it can be observed that the larger error
is found in the edges of the material. In order to evaluate the contribution of this kind of errors
for our particular geometry sizes, a 1µm radius metallic Li sphere immersed in a uniform static
field B0 (along the z-axis) was simulated with different voxel lengths and compared with the exact
solution. Figure S4 shows the simulation of the magnetic field for the spheres with voxel lengths
0.125µm, 0.25µm, 0.5µm, and 1µm, which gives 16, 8, 4, and 2 voxels for representing the diameter,
respectively. For 0.5µm and 1µm voxel lengths, the spheric characteristic of the object is clearly
lost (S4a). The perturbation of the (macroscopic) magnetic field, (Bmac −B0)/B0, is shown in units
of ppm in Figure S4b. Similar characteristics of the perturbation are observed despite the clear
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Figure S3: Simulation of a hexagonal array of cylinders with height 10µm, radius 5µm, and density
0.4. The slice is taken at half the cylinder’s height. a) No lateral superposition, and b) with lateral
superposition.

distinctions between the objects.

Figure S4: a) Discretization of a 1µm radius sphere with voxel lengths 0.125µm, 0.25µm, 0.5µm,
and 1µm. Four voxels are displayed for size comparison (blue). The red dotted lines indicate the
exact sphere. b) Simulation of the perturbation of the z-component of the macroscopic magnetic
field for different voxel lengths. The dotted lines indicate the sphere.

The numerical calculation of the field (BNumeric) and the excact solution (BExact) were compared
by evaluating both solutions along the z-axis (at x = y = 0) and the x-axis (at y = z = 0).
Figure S5a shows such comparison along the z-axis. For most cases, while the exact solution is
uniform within the sphere, the numerical solution is overestimated in the edges. The error along the
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z-axis, (BNumeric−BExact)/B0 in units of ppm, is shown in Figure S5b. While the larger voxel lengths
exhibit errors as high as 2.5 ppm, for 16 and 8 voxels per diameter, an error of ±0.5 ppm can be
assumed.

Figure S5: a) Comparison of the numerical and exact solution for perturbation of the z-component of
the macroscopic magnetic field for different voxel lengths, along the z-axis. b) Error of the numeric
solution along the z-axis. The grey strips represent the z-positions within the sphere.

The comparison between solutions and the error of the calculated magnetic field along the x-axis
are shown in Figures S6a and S6b, respectively. Similar to the observations along the z-axis, the
larger errors are found in the edges of the object. In addition, the errors are more pronounced for
larger voxel lengths, as can be seen in S6b.

It is important to notice that the edge region is crucial, since it is the main contributor to the
NMR signal (due to skin effect). Hence, the number of voxels used to represent the cylinders should
be small enough to minimize the error of the method, but large enough to simulate a FOV including
several cylinders. In this work, the smaller cylinders where simulated with radius 1µm and 0.25µm
voxel length. Therefore an error of at least ±0.5 ppm should be expected in the NMR spectra.

Spectra relative amplitude

The relative amplitude is defined by Amic/Abulk, where Amic and Abulk represent the integrals of the
microstructures and bulk spectra, respectively. Fig. S7 depicts the relative amplitudes as a function
of the density of cylinder-shaped microstructures.

It is important to note that the reported values correspond to a lithium surface region covered
with different densities of microstructures. In real samples, the relative amplitude values are typically
smaller due to contributions from regions without microstructures.

Construction of the Rand/(14◦ to 76◦) geometry

The Rand/(14◦ to 76◦) geometry involves cylinders that change their orientations, adapting random
angles (θ0, θ1, θ2) with respect to the z-direction and deviating at random angles (φ0, φ1, φ2) with
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Figure S6: a) Comparison of the numerical and exact solution for perturbation of the z-component of
the macroscopic magnetic field for different voxel lengths, along the x-axis. b) Error of the numeric
solution along the x-axis. The grey strips represent the x-positions within the sphere.

Figure S7: Relative signal amplitude of microstructures respect to bulk.

respect to the x-direction. Angle changes occur at two random z positions: the cylinders start with
angles (φ0, θ0) at z = 0, then adopt angles (φ1, θ1) at z1, and finally (φ2, θ2) at z2, extending to a
height h, as depicted in Fig. S8.

Since the cylinder is composed of stacked disks, the θ angle is determined by shifting the center
of the disk as z increases. The direction of this shift is determined by φ, with nz representing the
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number of centered stacked disks and nxy representing the number of voxels shifted. The resulting
discrete angle is given by

θ = arctan
nxy

nz

.

In this study, we used ratios of nxy/nz such as 1/4, 1/3, 1/2, 1, 2, 3, and 4, resulting in angles of
approximately 14◦, 18◦, 27◦, 45◦, 63◦, 72◦, and 76◦, respectively.

Deviation was permitted in the ±x, ±y, or ±x± y directions, allowing φ to take values such as
0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦.

Figure S8: Scheme of a microstructure with the Rand/(14◦ to 76◦) geometry.
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