Supporting Information

Revisiting the quasi-aromaticity in polynuclear metal chalcogenide

clusters and its derivative "cluster-assembly" crystalline structures

Bochu Wang^{1,2} and Wan-Lu Li*^{1,3}

¹Department of NanoEngineering, University of California San Diego, CA 92093 ²Department of Chemistry, University of California San Diego, CA 92093 ³Program of Materials Science and Engineering, University of California San Diego, CA 92093 *Corresponding Author: <u>wal019@ucsd.edu</u>

Table S1. Optimized bond parameters of $[M_3X_4(H_2O)_9]^{4+}$ clusters (M = Cr, Mo, W, Sg; X = O, S, Se, Te) at SR-ZORA PBE/VTZ level, and the single (r_1) and double (r_2) M–M bonds based on the latest recommended covalent radii by Pyykkö, which are all in Å.

	М-М	$X^b – X^b$	M–X ^c	$M – X^b$	$r_1(M-X)$	$r_2(M-X)$	M-H ₂ O
$[Cr_3O_4(H_2O)_9]^{4+}$	2.394	2.640	1.901	1.775	1.85	1.68	2.106 (2.090) ^a
$[Mo_{3}O_{4}(H_{2}O)_{9}]^{4+}$	2.552	2.834	2.068	1.919	2.01	1.78	2.237 (2.221)
$[W_{3}O_{4}(H_{2}O)_{9}]^{4+}$	2.543	2.845	2.081	1.925	2.00	1.77	2.226 (2.207)
$[Sg_{3}O_{4}(H_{2}O)_{9}]^{4+}$	2.648	2.939	2.176	1.999	2.06	1.85	2.302 (2.271)
$[Cr_3S_4(H_2O)_9]^{4+}$	2.708	3.178	2.233	2.164	2.25	2.05	2.171 (2.151)
$[Mo_{3}S_{4}(H_{2}O)_{9}]^{4+}$	2.791	3.404	2.374	2.294	2.41	2.15	2.291 (2.279)
$[W_3S_4(H_2O)_9]^{4+}$	2.766	3.465	2.394	2.314	2.40	2.14	2.273 (2.262)
$[Sg_{3}S_{4}(H_{2}O)_{9}]^{4+}$	2.884	3.606	2.509	2.409	2.46	2.22	2.339 (2.325)
$[Cr_3Se_4(H_2O)_9]^{4+}$	2.830	3.349	2.370	2.304	2.38	2.18	2.183 (2.168)
$[Mo_3Se_4(H_2O)_9]^{4+}$	2.850	3.597	2.497	2.424	2.54	2.28	2.308 (2.295)
$[W_3Se_4(H_2O)_9]^{4+}$	2.792	3.640	2.511	2.434	2.53	2.27	2.288 (2.280)
$[Sg_3Se_4(H_2O)_9]^{4+}$	2.858	3.761	2.595	2.505	2.59	2.35	2.354 (2.347)
$[Cr_{3}Te_{4}(H_{2}O)_{9}]^{4+}$	3.000	3.683	2.581	2.520	2.58	2.39	2.192 (2.172)
$[Mo_{3}Te_{4}(H_{2}O)_{9}]^{4}$	2.938	3.905	2.699	2.633	2.74	2.49	2.332 (2.323)
+							
$[W_3Te_4(H_2O)_9]^{4+}$	2.842	3.961	2.720	2.646	2.73	2.48	2.315 (2.313)
$[Sg_{3}Te_{4}(H_{2}O)_{9}]^{4+}$	2.888	4.087	2.805	2.716	2.79	2.56	2.385 (2.380)

^a Results without parentheses are corresponding to the distances between M and the H_2O moiety near X^c; results in the parentheses are the distances between M and the H_2O near X^b atoms.

0,1		
Orbital type	Irreducible representation	Bonding type
Γd_z^2	a ₁	$\sigma_{\rm r}$
	e	σ_r^*
Γd_{xz}	e	σ_t
	a ₂	σ_t^*
Γd_{yz}	a ₁	$\pi_{ m r}$
	e	$\pi_{ m r}^{*}$
Γd_{xy}	e	π_t
	a ₂	π_t^*
$\Gamma d_{x}^{2} - y^{2}$	a ₁	$\delta_{\rm v}$
	e	$\delta_{\rm v}^{*}$

Table S2. Orbital types transformed irreducible representations and the corresponding bonding types of d-based AOs in M_3 cluster with C_{3v} symmetry.

			X =	= 0			X	= S			X =	= Se				X =	= Te	
B()	Cr	Mo	W	Sg	Cr	Мо	W	Sg	Cr	Mo	W	Sg		Cr	Mo	W	Sg
Mayer	М–М	0.73	0.74	0.92	1.11	0.76	0.77	0.90	0.94	0.70	0.71	0.79	0.87	(0.82	0.85	0.86	1.02
	$X^b – X^b$	0.02	0.04	0.03	0.03	0.04	0.03	0.03	0.04	0.04	0.01	0.02	0.04	(0.05	0.03	0.04	0.05
	M–X ^b	1.02	0.91	0.90	0.89	1.31	1.24	1.23	1.20	1.31	1.22	1.22	1.22]	1.50	1.46	1.45	1.43
G-J	М-М	0.69	0.76	0.81	0.85	0.64	0.67	0.74	0.79	0.65	0.68	0.75	0.80	(0.66	0.69	0.77	0.84
	$X^b \!\!-\!\! X^b$	0.04	0.05	0.05	0.04	0.06	0.06	0.05	0.05	0.07	0.06	0.06	0.06	(0.09	0.07	0.06	0.06
	M–X ^b	1.04	1.00	0.97	0.95	1.17	1.15	1.13	1.11	1.17	1.16	1.13	1.11]	1.19	1.17	1.16	1.13
N-M(1)	М-М	0.79	0.86	0.97	1.00	0.71	0.74	0.85	0.89	0.72	0.75	0.86	0.90	(0.73	0.75	0.87	0.92
	$X^b – X^b$	0.05	0.06	0.05	0.05	0.05	0.06	0.06	0.06	0.07	0.06	0.06	0.06	(0.09	0.07	0.06	0.07
	M–X ^b	1.15	1.12	1.14	1.12	1.24	1.24	1.23	1.21	1.24	1.23	1.21	1.20	1	1.25	1.24	1.22	1.20
N-M(3)	М-М	0.64	0.69	0.77	0.79	0.63	0.66	0.75	0.77	0.65	0.67	0.76	0.79	(0.67	0.70	0.80	0.83
	$X^b – X^b$	0.05	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.07	0.06	0.06	0.06	(0.08	0.06	0.06	0.06
	M–X ^b	1.12	1.11	1.10	1.09	1.17	1.15	1.15	1.14	1.16	1.15	1.14	1.13	1	1.15	1.14	1.12	1.11

Table S3. M–M, X^b–X^b and M–X^b bond orders indices of $[M_3X_4(H_2O)_9]^{4+}$ clusters (M = Cr, Mo, W, Sg; X = O, S, Se, Te) at PBE/VTZ level.

Figure S1. AdNDP localized orbitals of $[Cr_3S_4(H_2O)_9]^{4+}$ at the PBE/VTZ level. ON means the occupation number (isosurface value = 0.02 au).

Figure S2. AdNDP localized orbitals of $[W_3S_4(H_2O)_9]^{4+}$ at the PBE/VTZ level. ON means the occupation number (isosurface value = 0.02 au).

Figure S3. AdNDP localized orbitals of $[Sg_3S_4(H_2O)_9]^{4+}$ at the PBE/VTZ level. ON means the occupation number (isosurface value = 0.02 au).

Figure S4. The NICS values of all 16 $[M_3X_4]^{4+}$ clusters (a: M = Cr, Mo, W, Sg; b: X = O, S, Se, Te) at PBE/VTZ level. The NICS values of Sg₃Te₄ were calculated at B3LYP level.

Figure S5. The NICS_{zz} values of $[Mo_3S_4]^{4+}$ at B3LYP/VTZ level, as well as the contributions from the σ and π components. Six special points are considered: centers

of Mo₃ plane Mo (0), S₃ plane S (0), half between Mo₃ and S₃ plane $\frac{(Mo + S)}{2}$ (0), and

1 Å above each plane: Mo (1), S (1) and $\frac{(Mo + S)}{2}$ (1).

Figure S6. The MICD current diagrams of $Mo_3S_4^{4+}$ from three different views at the levels of PBE and B3LYP functionals with VTZ basis sets. The red and green color in the contour plot correspond to the arrowhead and tail, respectively.

Table S4. Energy integral (–ICOHP, in eV/bond) values and electronic states in $BaMo_6S_8$, and atomic charges in *e* as obtained from Mulliken (M) and Löwdin (L) population approaches.

-IC	COHP	Electronic configuration and valence charge							
		M	0	S		В	la		
Mo-S	Мо-Мо	M $(4d^{5.14}5s^{0.52})^a$	L (4d ^{5.23} 5s ^{0.51})	M (3s ^{1.78} 3p ^{4.67})	L (3s ^{1.64} 3p ^{4.63})	M (6s ^{0.26} 3p ^{0.30})	L (6s ^{0.44} 3p ^{1.11})		
-2.53	-1.65	0.34 (0.24) ^b	0.26	-0.45 (-0.43)	-0.27	1.49	0.55		

^a Values in the parentheses in this raw correspond to the electronic structures from Mulliken (M) and Löwdin (L) methods.

 $^{\rm b}$ Values in the parentheses in this raw correspond to the Mulliken charge on Mo and S atoms in ${\rm Mo}_6{\rm S}_8{}^{\rm 2-}$ cluster for comparison.

Table S5. Bader atomic charges in e of Mo₃S₆ cluster for comparison with MoS₂ nanomaterial.

	Мо	S
Mo ₃ S ₆ cluster	0.99	-0.50
MoS ₂ nanomaterial	0.88	-0.44

Table S6. Geometric parameter (length in Å and angle in °) comparison of theoretical Mo_3S_4 nanomaterials and Mo_6S_8 cluster at GGA/PBE level.

	а	b	С	α	β	γ	Mo–S ^a	Mo-Mo ^a
Theo. BaMo ₆ S ₈	9.29	9.29	9.29	90.00	90.00	120.0	2.4388	2.8363
$Mo_6S_8^{2-}$	-	-	-	-	-	-	2.4364	2.6277

 $^{\rm a}$ The bond lengths of Mo–S and Mo–Mo are the average values in both $\rm Mo_3S_4$ nanomaterials and $\rm Mo_6S_8$ cluster.

Table S7. Bader atomic charges in e of Mo₆S₈ cluster for comparison with Mo₃S₄ nanomaterial.

	Мо	S
Mo ₆ S ₈ cluster	0.79	-0.59
Mo ₃ S ₄ nanomaterial	0.76	-0.57

Orbital type	Irreducible representation
Γd _{xy}	$a_{2u} + e_u + t_{2g}$
$\Gamma d_{x^{2}-y^{2}}$	$a_{2g} + e_g + t_{2u}$
Γd_z^2	$a_{1g} + e_g + t_{1u}$
$\Gamma(d_{xz}, d_{yz})$	$t_{1g} + t_{2g} + t_{1u} + t_{2u}$

Table S8. Orbital types transformed irreducible representations of d-based AOs in octahedral clusters.

Figure S7. Localized orbitals of $Mo_6S_8^{2-}$ revealed by AdNDP methods at the PBE/VTZ level.