1 Supporting Information

3	Strain-Induced Catalytic Enhancement in Co-BTA and Rh-BTA for
4	Efficient 2e ⁻ Oxygen Reduction: A DFT Study
5	Ran Tao ¹ , Cheng Liu ^{1†} , Weihua Ning ^{1†} , Youyong Li ^{1, 2†}
6	¹ Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
7	for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou
8	215123, China.
9	² Macao Institute of Materials Science and Engineering, Macau University of Science
10	and Technology, Taipa 999078, Macau SAR, China
11	
12	† Corresponding authors.
13	E-mail: <u>liucheng@suda.edu.cn</u> Tel: (86)-0512-65882037
14	Email: <u>whning@suda.edu.cn</u> Tel: (86)-0512-65882037
15	E-mail: yyli@suda.edu.cn Tel: (86)-0512-65882037
16	

17 Quantitative Analysis of Bonding Interactions via COHP

In this study, the Crystal Orbital Hamilton Population (COHP) analysis was employed to gain insights into the nature of interatomic interactions within the material. COHP offers a quantitative means to assess the bonding or anti-bonding contributions of chemical bonds.¹ By projecting the expectation values of the Hamiltonian operator onto the orbitals of specific atom pairs, COHP analysis reveals the distribution of bonding and anti-bonding states at various energy levels.

24 Specifically, COHP is achieved by analyzing the orbital information obtained 25 from electronic structure calculations, such as those based on Density Functional 26 Theory. The COHP for each pair of atoms can be expressed as:

$$COHP_{ij}(E) = -\sum_{k} P_{ij}^{k} H_{ij}^{k} \delta(E - E_{k})$$
27

28 Where P_{ij}^k and H_{ij}^k represent the crystal orbital overlap and Hamiltonian matrix 29 elements, respectively, and E_k is the corresponding eigenvalue of energy. The 30 integrated COHP (ICOHP) values quantify the total bonding and anti-bonding 31 contributions over the entire energy range.

32 *d*-band Center Calculation for Transition Metals

In the present investigation, particular attention was devoted to the position of the d-band center of transition metal surfaces, a key factor in understanding their catalytic activities. The *d*-band center refers to the weighted average energy position of the *d*state electrons in transition metals, significantly influencing surface adsorption properties and catalytic reactions. According to the theory proposed by Hammer and Nørskov, the position of the *d*-band center is intimately related to the electronic structure of adsorption sites on the catalyst surface.²

The location of the d-band center is determined by calculating the energy-weighted average of the d-electron states density on the surface. The calculation formula is as follows:

$$\epsilon_d = \frac{\int \epsilon D_d(\epsilon) d_\epsilon}{\int D_d(\epsilon) d_\epsilon}$$

where ϵ represents the energy and $D_d(\epsilon)$ is the density of states function for the *d*-45 states. The energetic proximity of the *d*-band center to the Fermi level dictates the 46 strength of the interaction between the metal surface and the adsorbed molecules. 47 Typically, the closer the *d*-band center is to the Fermi level, the stronger the interaction 48 with the adsorbate.

49

50

51

Туре	$E_{total} \left(eV \right)$	$G_{corr} (eV)$	$G_{total}\left(eV ight)$
Sc	-253.204	0.329	-252.875
Ti	-254.842	0.384	-254.458
V	-254.860	0.363	-254.498
Cr	-255.011	0.319	-254.692
Mn	-253.387	0.334	-253.053
Fe	-250.774	0.333	-250.441
Co	-247.827	0.321	-247.506
Ni	-244.173	0.288	-243.886
Ru	-250.657	0.292	-250.365
Rh	-247.091	0.336	-246.760
Pd	-242.430	0.252	-242.178
Pt	-245.020	0.257	-244.763

52 Table S1 Free energy of TM-BTA with the adsorption of *OOH.

53

54 **Table S2** Values of *d*-Band Centers for Co-BTA and Rh-BTA under varied strain 55 conditions.

Strain	-1.95%	-1.30%	-0.65%	0.00%	+0.65%	+1.30%	+1.95%
--------	--------	--------	--------	-------	--------	--------	--------

Co	-1.846	-1.775	-1.789	-1.746	-1.783	-1.743	-1.735
Rh	-1.713	-1.606	-1.538	-1.457	-1.509	-1.457	-1.464

57 **Table S3** Under different strain conditions, the average bond length (Å) between the 58 metal center atom and the surrounding coordination atoms before and after *OOH 59 adsorption.

]	Гуре	-1.95%	-1.30%	-0.65%	0.0%	+0.65%	+1.30%	+1.95%
	N-M	2.092	2.101	2.113	2.121	2.128	2.141	2.151
Sc	N- M(*OOH)	2.204	2.210	2.209	2.237	2.227	2.234	2.241
	N-M	2.003	1.982	1.989	1.996	2.004	2.044	2.029
Ti	N- M(*OOH)	2.049	2.044	2.039	2.047	2.043	2.055	2.063
	N-M	1.942	1.968	1.981	1.993	2.007	2.020	2.035
Cr	N- M(*OOH)	1.967	1.981	1.981	1.987	2.007	2.019	2.033
	N-M	1.894	1.903	1.912	1.920	1.928	1.939	1.949
Mn	N- M(*OOH)	1.925	1.923	1.928	1.935	1.944	1.953	1.965
	N-M	1.847	1.861	1.872	1.879	1.887	1.899	1.909
Fe	N- M(*OOH)	1.892	1.890	1.892	1.898	1.907	1.918	1.929
	N-M	1.819	1.827	1.836	1.845	1.855	1.865	1.876
Co	N- M(*OOH)	1.866	1.867	1.867	1.872	1.881	1.892	1.904
	N-M	1.822	1.830	1.841	1.849	1.858	1.868	1.881
Ni	N- M(*OOH)	1.837	1.845	1.855	1.865	1.874	1.885	1.898
	N-M	1.945	1.953	1.966	1.973	1.985	1.996	2.006
Rh	N- M(*OOH)	1.992	1.991	1.991	1.997	2.008	2.025	2.033
	N-M	1.965	1.974	1.985	1.994	2.002	2.013	2.025
Pd	N- M(*OOH)	1.969	1.978	1.988	1.999	2.009	2.021	2.029
	N-M	1.968	1.976	1.987	1.994	2.002	2.013	2.024
Pt	N- M(*OOH)	1.977	1.982	1.990	1.999	2.010	2.019	2.029

60

61 **Table S4.** The calculated formation energies (ΔE_{form}) of Ni-, Co-, and Rh-BTA.

Туре	Ni-BTA	Co-BTA	Rh-BTA
$\Delta E_{form} \left(eV \right)$	-4.246	-4.956	-4.478

63 The corresponding formation energy calculation formula is stated as follows:

$$\Delta E_{form} = E_{TM - BTA} - E_{BTA} + 2E_{H_2} - \mu_{TM}^0$$

64 65

66

Fig. S1. Plot of the relationship between ΔG_{*OOH} values and the dependent variable obtained by studying the DFT and DFT+U methods, (a) Co-BTA, (b) Rh-BTA. In view of the fact that Co and Rh are elements of the same main group and have similar properties, the same U value of 3.42 eV was used for correction, and the corresponding U value was taken from Reference 3.

Fig. S2. Trend of the limiting potential of Co-BTA as a function of strain at differentelectrode potentials.

76

77 Modeling Structure:

The structural model consists of two consecutive units in the long chain of TM-78 79 BTA, containing 8 nitrogen (N) atoms, 12 carbon (C) atoms, 2 transition metal (TM) atoms, and 12 (H) hydrogen atoms. To avert interlayer interactions stemming from the 80 model's periodicity, a vacuum layer exceeding 15 Å was implemented. Due to the 81 excessive length of the model structure information, we only present the detailed atomic 82 coordinates of Co-BTA and Rh-BTA catalysts below, and the structures of other TM-83 BTA are consistent with the above two catalysts. The detailed atomic coordinates 84 within the Co-BTA and Rh-BTA structures are presented as follows: 85

```
87 Co-BTA
```

88	1.000	000000	00000			
89	15.3	491017	285728	528	0.00000000000000000	0.0000000000000000000000000000000000000
90	0.0	000000	000000	000	15.000000000000000000	0.0000000000000000000000000000000000000
91	0.0	000000	000000	000	0.00000000000000000	15.0000000000000000000
92	Ν	С	Co	Н		
93	8	12	2	12		

94 Direct

95	0.0895902379050250	0.4991186746333861	0.3865148392397993
96	0.0895887834221885	0.5012397328976045	0.5498835635452040
97	0.4098006943556209	0.4982958718898646	0.3865262809346313
98	0.4098001216528388	0.5004129707827337	0.5498950532058443
99	0.5895902069050261	0.4991186746333861	0.3865148392397993
100	0.5895887444221890	0.5012397328976045	0.5498835635452040
101	0.9098007253556267	0.4982958718898646	0.3865262809346313
102	0.9098000596528411	0.5004129707827337	0.5498950532058443
103	0.1711729500927192	0.5004863898511075	0.5173103360165816
104	0.2496951073533480	0.4983585636293733	0.3716685678086143
105	0.1711732738492757	0.4992387175269557	0.4191008214195861
106	0.2496928267641682	0.5007742693669117	0.5647549011889900
107	0.3282155322063594	0.5000712635554716	0.5173169629724071
108	0.3282172100167997	0.4988248276336688	0.4191075844708111
109	0.6711729500927193	0.5004863898511075	0.5173103360165816
110	0.7496950913533464	0.4983585636293733	0.3716685678086143
111	0.6711732738492757	0.4992387175269557	0.4191008214195861
112	0.7496927947641655	0.5007742693669117	0.5647549011889900
113	0.8282155322063595	0.5000712635554716	0.5173169629724071
114	0.8282172100167997	0.4988248276336688	0.4191075844708111
115	0.4996944040707945	0.4998016422790791	0.4682057959301015
116	0.9996943720707989	0.4998016422790791	0.4682057959301015
117	0.0851034233706787	0.4985115789467765	0.3185155831273289
118	0.0850903367907922	0.5024101604251938	0.6178757992400530
119	0.2496934025220973	0.4973564361431386	0.2988732091262277
120	0.2496922799568755	0.5015350026233641	0.6375557946369916
121	0.4142919573684221	0.4972492176786306	0.3185323861921964
122	0.4142925183019936	0.5011376571367452	0.6178934149446138
123	0.5851034543706779	0.4985115789467765	0.3185155831273289

124	0.5850903677907910	0.5024101604251938	0.6178757992400530
125	0.7496934025220974	0.4973564361431386	0.2988732091262277
126	0.7496922479568729	0.5015350026233641	0.6375557946369916
127	0.9142918953684170	0.4972492176786306	0.3185323861921964
128	0.9142925803019987	0.5011376571367452	0.6178934149446138
129			
130			
131			
132	Rh-BTA		
133	1.0000000000000000		
134	15.87239447428173	56 0.000000000000	0000 0.000000000000000
135	0.000000000000000	00 15.000000000000	0000 0.000000000000000
136	0.000000000000000	00 0.000000000000	0000 15.000000000000000
137	N C Rh	Н	
138	8 12 2	12	
139	Direct		
140	0.0954818285310498	0.4991080770760946	0.3844900472014136
141	0.0954781254528985	0.5012766839198949	0.5519068476612741
142	0.4039118509360499	0.4982466549370634	0.3845020481363073
143	0.4039127928193034	0.5004123177241165	0.5519197348671527
144	0.5954817975310507	0.4991080770760946	0.3844900472014136
145	0.5954780864528990	0.5012766839198949	0.5519068476612741
146	0.9039118819360560	0.4982466549370634	0.3845020481363073
147	0.9039127308193053	0.5004123177241165	0.5519197348671527
148	0.1735333118752028	0.5005044316520921	0.5174143176071638
149	0.2496950440494412	0.4983701250801783	0.3719950909446707
150	0.1735339421626845	0.4992518411569508	0.4190007811293734
151	0.2496940220437394	0.5007827031942313	0.5644293280674303
152	0.3258565912512599	0.5000698454373815	0.5174196332427976
153	0.3258572071023307	0.4988184955120521	0.4190057418785815

S8

154	0.6735333118752029	0.5005044316520921	0.5174143176071638
155	0.7496950280494399	0.4983701250801783	0.3719950909446707
156	0.6735339421626845	0.4992518411569508	0.4190007811293734
157	0.7496939900437365	0.5007827031942313	0.5644293280674303
158	0.8258565912512602	0.5000698454373815	0.5174196332427976
159	0.8258572071023306	0.4988184955120521	0.4190057418785815
160	0.4996963121292030	0.4997956539071644	0.4682030661506385
161	0.9996962801292073	0.4997956539071644	0.4682030661506385
162	0.0935242602477702	0.4985199849757916	0.3163298219316670
163	0.0935111106643159	0.5024709240852789	0.6200590122280992
164	0.2496911484120483	0.4973632388197735	0.2991515852694218
165	0.2496903188952541	0.5015425345903327	0.6372766798046936
166	0.4058683034479623	0.4971741864837921	0.3163477184545144
167	0.4058688899794836	0.5011152784478171	0.6200794394247835
168	0.5935242912477693	0.4985199849757916	0.3163298219316670
169	0.5935111416643151	0.5024709240852789	0.6200590122280992
170	0.7496911484120484	0.4973632388197735	0.2991515852694218
171	0.7496902868952516	0.5015425345903327	0.6372766798046936
172	0.9058682414479571	0.4971741864837921	0.3163477184545144
173	0.9058689519794887	0.5011152784478171	0.6200794394247835
174			

175 **References**

- 176 1. R. Dronskowski and P. E. Bloechl, The Journal of Physical Chemistry, 1993, 97, 8617-8624.
- 177 2. B. Hammer and J. K. Norskov, *Nature*, 1995, **376**, 238-240.
- 178 3. H. Xu, D. Cheng, D. Cao and X. C. Zeng, *Nature Catalysis*, 2024, 7, 207-218.