Supporting Information: Dynamics of aqueous suspension of short Hyaluronic acid chains near DPPC bilayer

Anirban Paul^{*a} and Jaydeb Chakrabarti^{*b}

 ^aDepartment of Physics of Complex Systems, S.N. Bose National Centre for Basic Sciences, Block JD, Salt Lake, Kolkata-700098, India , email: anirbanpaulhdb@gmail.com,
^bDepartment of Chemical and Biological Sciences and the Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India , email: jaydeb@bose.res.in

Figure S1: Total energy of the system at equilibrium for (a) $n_{HA5}=0$, (b) $n_{HA5}=10$, (c) $n_{HA5}=30$, (d) $n_{HA5}=50$, (e) N=1 and (f) N=10.

Figure S2: Volume of the simulation box at equilibrium for (a) $n_{HA5}=0$, (b) $n_{HA5}=10$, (c) $n_{HA5}=30$, (d) $n_{HA5}=50$, (e) N=1 and (f) N=10.

Figure S3: Typical equilibrium snapshot of (a) $n_{HA5}=0$, (b) $n_{HA5}=10$, (c) $n_{HA5}=30$, (d) $n_{HA5}=50$, (e) N=1 and (f) N=10. Hyaluronic acids (HA) and lipid bilayer are shown in vdw and bonds representation respectively with the following color codes: *Cyan* for Carbons, *red* for Oxygens, and *blue* for Nitrogens. The normal of the lipid bilayer is along z axis. Water molecules are not shown.

Figure S4: (a) Density profiles of Phosphorus atoms ($\rho_P(z)$, grey solid line), HA ($\rho_H(z)$, dotted black line), and water ($\rho_W(z)$, solid black line) along the bilayer normal for $n_{HA5}=0$, (b) $n_{HA5}=10$, (c) $n_{HA5}=50$ and (d) N=1. Origin is set at the bilayer center. $\rho_H(z)$ is amplified by a factor of 5.

Figure S5: (a) Survival probability of water $S_W(t)$ in region A for different HA concentrations: $n_{HA5}=0$ (solid black line), $n_{HA5}=10$ (dotted black line), $n_{HA5}=30$ (solid gray line), $n_{HA5}=50$ (dashed black line) and (b) for varying HA chain size: N=1 (solid black line), N=1 (dotted black line), N=10 (solid gray line). (c) $S_W(t)$ in region B for different n_{HA5} and (d) for different N. The same line type as (a)-(b) is used.

Table	S1:	Mean	residence	time of	f water	in	region A	(τ_W^A)) and in	region 1	B $(\tau_W^B),$	obtained	from
$S_W(t)$	in r	especti	ive regions	(Figur	e <mark>S</mark> 5).	$\tau_W^{A,0}$	and $\tau_W^{B,0}$	are	shown.				

D

~ (W W	
	system	$ au_W^A (\mathrm{ps})$	$ au_W^B$ (ps)
	$n_{HA5}=0$	$10.86 \ (\tau_W^{A,0})$	$20.07 \ (au_W^{B,0})$
	$n_{HA5}=10$	11.86	21.24
	$n_{HA5}=30$	11.83	22.90
	$n_{HA5}=50$	13.40	25.27
	N=1	12.37	22.32
	N=5	11.83	22.90
	N=10	12.79	23.08

Figure S6: Survival probability of HA monomers $S_H(t)$ in region B for (a) $n_{HA5}=10$ (dotted black line), $n_{HA5}=30$ (solid gray line), $n_{HA5}=50$ (dashed black line), and (b) N=1 (solid black line), N=5 (dotted black line), N=10 (solid gray line).

Table S2: Mean residence time of HA monomers (τ_H) in region B, computed from $S_H(t)$ (Figure S6). τ_H^1 is indicated.

system	$\tau_H (ps)$
$n_{HA5}=0$	-
$n_{HA5} = 10$	568.84
$n_{HA5}=30$	494.87
$n_{HA5}=50$	677.04
N=1	$372.48 \ (\tau_H^1)$
N=5	494.87
N=10	588.65

Table S3: Translational diffusion exponents (β_W) of $\langle r_W^2 \rangle$ in region A

system	β_W
$n_{HA5}=0$	0.75
$n_{HA5} = 10$	0.73
$n_{HA5}=30$	0.73
$n_{HA5}=50$	0.72
N=1	0.73
N=5	0.73
N=10	0.73

γ_W
0.73
0.72
0.74
0.72
0.73
0.73
0.75

Table S4: Rotational diffusion exponents (γ_W) of $\langle \phi_W^2 \rangle$ in region A

Figure S7: Rotational autocorrelation function of the water molecules (C(t)) in region B for different HA concentrations: $n_{HA5}=0$ (solid black line), 10 (dotted black line), 30 (solid gray line) and 50 (dashed black line) (b) $\langle r_W^2 \rangle$ in region B for varying HA chain sizes: N=1 (solid black line), N=5 (dotted black line) and N=10 (solid gray line)

Table S5: First rank rotational autocorrelation time of water molecules, t_1^W in region B (computed from C(t) in SI Figure S7) and the product of t_1^W and rotational diffusion, D_R^W

system	$t_1^W(ps)$	$t_1^W \cdot D_R^W$
$n_{HA5}=0$	1.84	0.51
$n_{HA5}=10$	2.13	0.55
$n_{HA5} = 30$	2.21	0.56
$n_{HA5} = 50$	2.53	0.59
N=1	2.13	0.53
N=5	2.21	0.56
N=10	2.53	0.60

Table S6: translational diffusion exponents (β_H) of HA monomers in region B.

system	β_H
$n_{HA5}=0$	-
$n_{HA5}=10$	0.80
$n_{HA5} = 30$	0.80
$n_{HA5} = 50$	0.79
N=1	0.88
N=5	0.80
N = 10	0.79

Table S7: First rank rotational <u>autocorrelation time t_1^H for interfacial HA monomers</u>

system	t_1^H (ns)
$n_{HA5}=0$	-
$n_{HA5}=10$	6.1
$n_{HA5} = 30$	6.8
$n_{HA5} = 50$	7.7
N=1	0.2
N=5	6.8
N=10	24.6

Figure S8: (a) Translational mean squared displacements of the Phosphorus atoms $(\langle r_P^2 \rangle)$ in the lateral plane of the bilayer for varying HA concentrations: $n_{HA5} = 0$ (solid black line), 10 (dotted black line), 30 (gray solid line), 50 (dashed black line) and (b) for different HA chain sizes: N=1 (solid black line), N=5 (dotted black line) and N=10 (solid gray line)

Figure S9: (a) Rotational mean squared displacements of the lipid PN vectors $(\langle \phi_{PN}^2 \rangle)$ for n_{HA5} = 0 (solid black line), 10 (dotted black line), 30 (gray solid line), 50 (dashed black line) and (b) for N=1 (solid black line), N=5 (dotted black line) and N=10 (solid gray line)