Supplementary Material

 O_2 activation on subnanometer Re-Pt clusters supported on TiO₂(110): exploring adsorption sites

Andrés Álvarez-García¹, Luis M. Molina², and Ignacio L. Garzón^{*,1}

¹Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico,

 $^2 \mathrm{Departamento}$ de Física Teórica, Atómica y Optica, Universidad de Valladolid, E-47011 Valladolid, Spain

List of Tables

S1	Bader charge analysis of supported $\operatorname{Re}_n\operatorname{Pt}_m$ clusters on $\operatorname{TiO}_2(110)$. The charge for the cluster atoms is reported both before and after O_2 adsorption, as well as the difference between the two. The charges of the atoms are listed in order, starting with the Re atoms and continuing with the Pt atoms.	3
S2	The adsorption of O_2 on the surface site of Re-Pt clusters supported on $TiO_2(110)$. The adsorption mode, adsorption energy (E_{ads}) , and the height of the Ti atoms binding to the molecule are displayed.	3
S3	Total charge transferred to the O_2 molecule ($Q[O_2]$), charge transferred from the cluster to the O_2 molecule (ΔQ [cluster]), and charge transferred from the surface to the O_2 molecule (ΔQ [surface]). The Bader charge is shown in e	4
S4	The effect of the temperature $(T = 300 \text{ K})$ on reaction energies for the O ₂ dissociation on gas-phase Re-Pt clusters	4

List of Figures

S1	Global minima configurations for gas-phase $\operatorname{Re}_n\operatorname{Pt}_m(n+m=5)$: a) Re_5 , b) $\operatorname{Re}_4\operatorname{Pt}_1$, c) $\operatorname{Re}_3\operatorname{Pt}_2$, d) $\operatorname{Re}_2\operatorname{Pt}_3$, e) $\operatorname{Re}_1\operatorname{Pt}_4$, f) Pt_5 . The binding energy and magnetization are shown below each structure.	5
S2	Putative global minima(GM) and lowest energy isomers(ISO1, ISO2) for a) Re_5 , b) Re_4Pt_1 , and c) Re_3Pt_2 clusters supported on $\text{TiO}_2(110)$. The relative energy and total magnetization are presented below each structure	6
S3	Putative global minima(GM) and lowest energy isomers(ISO1, ISO2) for a) Re_2Pt_3 , b) Re_1Pt_4 , and c) Pt_5 clusters supported on $TiO_2(110)$. The relative energy and total magnetization are presented below each structure	7
S4	The most stable structures for O_2 dissociation on gas-phase (left) and supported (right) $\operatorname{Re}_n\operatorname{Pt}_m(n+m=5)$ clusters : a) Re_5 , b) $\operatorname{Re}_4\operatorname{Pt}_1$, c) $\operatorname{Re}_3\operatorname{Pt}_2$, d) $\operatorname{Re}_2\operatorname{Pt}_3$, e) $\operatorname{Re}_1\operatorname{Pt}_4$. The dissociative adsorption energy of O_2 is displayed below each structure in eV. The structure of the supported clusters is simplified by showing only the surface trilayer for ease of analysis.	8
S5	The most stable structures for dissociative adsorption on the interface Re-Ti of Re_5 (left) and Re_4Pt_1 (right) supported on $TiO_2(110)$ surface. Adsorption of O_2 at the Re-Ti interface is prone to dissociation, leading to the formation of atomic oxygen. The adsorption energy is displayed below each structure in eV.	9
S6	The lattice distortions caused by the formation of small polarons on the $TiO_2(110)$ surface. The left side shows the distortion for the substrate of the Re ₅ cluster. The right side shows the Ti–O lengths for the lattice distortion of the Re-Pt clusters supported on $TiO_2(110)$.	9

1. O₂ activation on $Pt_n Re_m(n+m=5)$ clusters supported on $TiO_2(110)$

Supported Cluster	O_2 adsorption	Q[cluster atoms] (e)	Total cluster charge (e)
	Before	0.52,-0.07,0.60,0.48,0.52	2.06
${ m Re}_5$	After	0.52, 0.21, 0.97, 0.54, 0.82	3.06
	Difference	0.00, 0.28, 0.36, 0.06, 0.30	1.00
	Before	0.42, 0.56, 0.75, 0.46, -0.45	1.74
$\mathrm{Re}_4\mathrm{Pt}_1$	After	0.44,1.18,0.78,0.47,-0.39	2.48
	Difference	0.02, 0.62, 0.03, 0.01, 0.06	0.74
	Before	0.56, 0.91, 0.39, -0.33, -0.26	1.27
$\mathrm{Re}_3\mathrm{Pt}_2$	After	0.81, 0.55, 1.14, -0.39, -0.41	1.70
	Difference	0.25,-0.36,0.75,-0.06,-0.15	0.43
	Before	0.84, 1.03, -0.31, -0.33, -0.08	1.15
$\mathrm{Re}_{2}\mathrm{Pt}_{3}$	After	1.37,1.15,-0.25,-0.36,-0.06	1.85
	Difference	0.53,0.12,0.06,-0.03,0.02	0.70
	Before	1.31,-0.25,-0.03,-0.22,-0.11	0.70
$\mathrm{Re}_1\mathrm{Pt}_4$	After	1.31,-0.18,-0.21,0.21,-0.04	1.09
	Difference	$0.00,\ 0.07,\ -0.18,\ 0.43,\ 0.07$	0.39
	Before	$-0.05,\ 0.15,\ 0.06,\ 0.00,\ 0.09$	0.25
Pt_5	After	-0.04,0.42,0.01,0.31,0.02	0.72
	Difference	0.01, 0.27, -0.05, 0.31, -0.07	0.47

Table S1: Bader charge analysis of supported $\text{Re}_n \text{Pt}_m$ clusters on $\text{TiO}_2(110)$. The charge for the cluster atoms is reported both before and after O₂ adsorption, as well as the difference between the two. The charges of the atoms are listed in order, starting with the Re atoms and continuing with the Pt atoms.

Table S2: The adsorption of O_2 on the surface site of Re-Pt clusters supported on $TiO_2(110)$. The adsorption mode, adsorption energy (E_{ads}) , and the height of the Ti atoms binding to the molecule are displayed.

Supported system	Adsorption mode	E_{ads}	$\operatorname{Height-Ti}_{5c}$	
${ m Re}_5$	$\eta^2 - \mathrm{Ti}$	1.35	1.12	
$\mathrm{Re}_4\mathrm{Pt}_1$	$\eta^2 - \mathrm{Ti}$	1.41	1.08	
$\mathrm{Re}_3\mathrm{Pt}_2$	$\mu_2-\mathrm{Ti}$	1.55	0.00	
$\mathrm{Re}_{2}\mathrm{Pt}_{3}$	$\eta^2 - \mathrm{Ti}$	1.32	1.10	
$\mathrm{Re}_1\mathrm{Pt}_4$	$\mu_2-{ m Ti}$	1.17	0.00	
Pt_5	$\eta^2 - \mathrm{Ti}$	0.93	1.06	

Table S3: Total charge transferred to the O_2 molecule (Q[O_2]), charge transferred from the cluster to the O_2 molecule (Δ Q[cluster]), and charge transferred from the surface to the O_2 molecule (Δ Q[surface]). The Bader charge is shown in e.

Charges	Re_5	$\mathrm{Re}_4\mathrm{Pt}_1$	$\mathrm{Re}_3\mathrm{Pt}_2$	$\mathrm{Re}_{2}\mathrm{Pt}_{3}$	$\mathrm{Re}_1\mathrm{Pt}_4$	Pt_5
$\mathbf{Q}[O_2]$	-0.99	-0.78	-0.62	-0.80	-0.44	-0.59
$\Delta Q[cluster]$	1.00	0.74	0.47	0.70	0.39	0.48
$\Delta Q[surface]$	-0.01	0.04	0.15	0.10	0.05	0.11
$Q[O_2]$	-0.94	-0.94	-0.88	-0.96	-0.89	-0.94
$\Delta Q[cluster]$	0.25	0.04	0.24	0.43	0.43	0.68
$\Delta Q[surface]$	0.69	0.90	0.64	0.53	0.46	0.26
$Q[O_2]$	_	_	-0.88	-0.83	-0.85	-0.83
$\Delta Q[cluster]$	—	_	0.47	0.66	0.68	0.62
$\Delta Q[surface]$	_	_	0.41	0.17	0.17	0.21
	Charges $Q[O_2]$ $\Delta Q[cluster]$ $\Delta Q[surface]$ $Q[O_2]$ $\Delta Q[cluster]$ $\Delta Q[surface]$ $\Delta Q[cluster]$ $\Delta Q[cluster]$ $\Delta Q[cluster]$ $\Delta Q[surface]$	Charges Re5 $Q[O_2]$ -0.99 $\Delta Q[cluster]$ 1.00 $\Delta Q[surface]$ -0.01 $Q[O_2]$ -0.94 $\Delta Q[cluster]$ 0.25 $\Delta Q[surface]$ 0.69 $Q[O_2]$ - $\Delta Q[cluster]$ 0.69 $Q[O_2]$ - $\Delta Q[cluster]$ - $\Delta Q[cluster]$ - $\Delta Q[surface]$ -	Charges Re $_5$ Re $_4$ Pt ₁ Q[O_2] -0.99 -0.78 Δ Q[cluster] 1.00 0.74 Δ Q[surface] -0.01 0.04 Q[O_2] -0.94 -0.94 Δ Q[cluster] 0.25 0.04 Δ Q[surface] 0.69 0.90 Q[O_2] - - Δ Q[cluster] 0.7 - Δ Q[cluster] - - Δ Q[cluster] - - Δ Q[surface] - -	Charges Re_5 Re_4Pt_1 Re_3Pt_2 $Q[O_2]$ -0.99 -0.78 -0.62 $\Delta Q[cluster]$ 1.00 0.74 0.47 $\Delta Q[surface]$ -0.01 0.04 0.15 $Q[O_2]$ -0.94 -0.94 -0.88 $\Delta Q[cluster]$ 0.25 0.04 0.24 $\Delta Q[surface]$ 0.69 0.90 0.64 $Q[O_2]$ $ -0.88$ $\Delta Q[cluster]$ $ -0.88$ $\Delta Q[cluster]$ $ -0.47$ $\Delta Q[surface]$ $ 0.41$	Charges Re_5 Re_4Pt_1 Re_3Pt_2 Re_2Pt_3 $Q[O_2]$ -0.99 -0.78 -0.62 -0.80 $\Delta Q[cluster]$ 1.00 0.74 0.47 0.70 $\Delta Q[surface]$ -0.01 0.04 0.15 0.10 $Q[O_2]$ -0.94 -0.94 -0.88 -0.96 $\Delta Q[cluster]$ 0.25 0.04 0.24 0.43 $\Delta Q[surface]$ 0.69 0.90 0.64 0.53 $Q[O_2]$ $ -0.88$ -0.83 $\Delta Q[cluster]$ $ 0.47$ 0.66 $\Delta Q[surface]$ $ 0.41$ 0.17	Charges Re_5 Re_4Pt_1 Re_3Pt_2 Re_2Pt_3 Re_1Pt_4 $Q[O_2]$ -0.99 -0.78 -0.62 -0.80 -0.44 $\Delta Q[cluster]$ 1.00 0.74 0.47 0.70 0.39 $\Delta Q[surface]$ -0.01 0.04 0.15 0.10 0.05 $Q[O_2]$ -0.94 -0.94 -0.88 -0.96 -0.89 $\Delta Q[cluster]$ 0.25 0.04 0.24 0.43 0.43 $\Delta Q[surface]$ 0.69 0.90 0.64 0.53 0.46 $Q[O_2]$ $ -0.88$ -0.83 -0.85 $\Delta Q[cluster]$ $ 0.47$ 0.66 0.68 $\Delta Q[surface]$ $ 0.41$ 0.17 0.17

Table S4: The effect of the temperature (T = 300 K) on reaction energies for the O_2 dissociation on gas-phase Re-Pt clusters

	Gas-phase	$\Delta \to [T = 0 \text{ K}]$	$\Delta \ \mathrm{G} \ \mathrm{[T=300 \ K]}$	Thermal Correction
_	clusters	(eV)	(eV)	(eV)
	Re5	-3.52	-3.50	0.02
	Re4Pt1	-3.23	-3.35	-0.12
	Re3Pt2	-2.87	-2.92	-0.05
	Re2Pt3	-2.87	-2.92	-0.05
	Re1Pt4	-2.84	-2.76	0.08
	Pt5	-0.44	-0.50	-0.06

2. Structure and properties of $Pt_n Re_m(n+m=5)$ clusters supported on $TiO_2(110)$

Figure S1: Global minima configurations for gas-phase $\operatorname{Re}_n\operatorname{Pt}_m(n+m=5)$: a) Re_5 , b) $\operatorname{Re}_4\operatorname{Pt}_1$, c) $\operatorname{Re}_3\operatorname{Pt}_2$, d) $\operatorname{Re}_2\operatorname{Pt}_3$, e) $\operatorname{Re}_1\operatorname{Pt}_4$, f) Pt_5 . The binding energy and magnetization are shown below each structure.

Figure S2: Putative global minima(GM) and lowest energy isomers(ISO1, ISO2) for a) Re_5 , b) Re_4Pt_1 , and c) Re_3Pt_2 clusters supported on $TiO_2(110)$. The relative energy and total magnetization are presented below each structure

Figure S3: Putative global minima(GM) and lowest energy isomers(ISO1, ISO2) for a) Re_2Pt_3 , b) Re_1Pt_4 , and c) Pt_5 clusters supported on $TiO_2(110)$. The relative energy and total magnetization are presented below each structure

3. O₂ dissociation on $Pt_nRe_m(n+m=5)$ clusters supported on TiO₂(110)

Figure S4: The most stable structures for O₂ dissociation on gas-phase (left) and supported (right) $\operatorname{Re}_n\operatorname{Pt}_m(n+m=5)$ clusters : a) Re_5 , b) $\operatorname{Re}_4\operatorname{Pt}_1$, c) $\operatorname{Re}_3\operatorname{Pt}_2$, d) $\operatorname{Re}_2\operatorname{Pt}_3$, e) $\operatorname{Re}_1\operatorname{Pt}_4$. The dissociative adsorption energy of O₂ is displayed below each structure in eV. The structure of the supported clusters is simplified by showing only the surface trilayer for ease of analysis.

Figure S5: The most stable structures for dissociative adsorption on the interface Re-Ti of Re₅ (left) and Re₄Pt₁ (right) supported on TiO₂(110) surface. Adsorption of O₂ at the Re-Ti interface is prone to dissociation, leading to the formation of atomic oxygen. The adsorption energy is displayed below each structure in eV.

Figure S6: The lattice distortions caused by the formation of small polarons on the $TiO_2(110)$ surface. The left side shows the distortion for the substrate of the Re₅ cluster. The right side shows the Ti–O lengths for the lattice distortion of the Re-Pt clusters supported on $TiO_2(110)$.