Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Electronic Supplementary Information for

Localized Surface Plasmon Resonances of Size-Selected Large Silver Nanoclusters ($n = 70 \sim 100$) Soft-Landed on a C₆₀ Organic Substrate

Tomoya Inoue,^a Kaito Mizoguchi,^a Miwa Tokita,^a Masahiro Shibuta,^{b,§} Masato Nakaya,^{a,†} Toyoaki Eguchi, ^{a,‡} and Atsushi Nakajima^{a,b,*}

^aDepartment of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

^bKeio Institute of Pure and Applied Sciences (KiPAS), Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

*Address correspondence to A. Nakajima

Tel: +81-45-566-1712, Fax: +81-45-566-1697, E-mail: nakajima@chem.keio.ac.jp

Present address: Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cyo, Naka-ku, Sakai, Osaka 599-8531 Japan

[†]Present address: Department of Energy Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

*Present address: The Toyama Monozukuri Center, 3816-1 Kishi, Yamakita-machi, Ashigarakami-gun, Kanagawa, 258-0112, JAPAN

Contents

Figure S1. STM image of soft-landed Ag_n NCs on a C₆₀ substrate at n = 3, 7, 13, and 55.S2Figure S2. UPS and XPS spectra for (a) Ag_{100}/C_{60} and (b) Ag 3d of Ag₇₀, Ag₈₅, and Ag₁₀₀.S3ReferenceS3

Figure S1. STM image of soft-landed Ag_n NCs on a C₆₀ substrate ($100 \times 100 \text{ nm}^2$) at a low coverage ($\sim 4 \times 10^3 \text{ dots}/\mu\text{m}^2 \approx 7.3 \times 10^{-3} \text{ ML}$); (a) n=3, (b) n=7, (c) n=13, and (d) n=55. The tip bias voltage (V_t) and tunneling current (I_t) are $V_t = -2.0$ V and $I_t = 10$ pA, respectively. Inset in (a) is a high-resolution image of a rectangular region surrounded by dotted line in (a). Bright dots correspond to individual Ag_n NCs, monodispersively immobilized on the C₆₀ surface,¹ similar to Ag₇₅ NCs on C₆₀ in Figure 1 in the main text.

Figure S2. (a) Ultraviolet photoelectron spectrum for Ag_{100} nanoclusters (NCs) on a C_{60} substrate and (b) X-ray photoelectron spectra for Ag 3d of Ag₇₀, Ag₈₅, and Ag₁₀₀ NCs. In the UPS spectra, peaks assignable to the highest occupied molecular orbital (HOMO) and the second HOMO (HOMO-1) are observed at the binding energies (BEs) of 2.3 and 3.6 eV, respectively, which show no peak shift with the deposition of Ag₁₀₀ nanoclusters (NCs). Since they shift toward higher BEs with electron donation or toward lower BEs with electron acceptance,² the lack of shift indicates that Ag₁₀₀ NCs on C₆₀ are in a neural state. In the XPS spectra for Ag 3d, although characterizing their charge states is hard due to intrinsic small chemical state dependence within the spectral resolutions, it does not seems contradictory to the zerovalent of Ag atoms in Ag_n NCs, and no NC size-dependent behavior is observed.

Reference

1. M. Nakaya, T. Iwasa, H. Tsunoyama, T. Eguchi, and A. Nakajima, *Adv. Funct. Mater.*, **2014**, *24*, 1202–1210 (2014).

2. T. Kamoshida, M. Shibuta, T. Ohta, T. Eguchi, and A. Nakajima, J. Phys. Chem. C, 2022, 126, 10889–10899.