Supporting Information

Theoretical investigate of Janus Ti_2BST (T = O, Se) monolayers as anode materials for Na/K-ion batteries

Yanzong Wang,*a Lili Xie,a, b, c Rui Huang, Sai Yan,a Xingyong Xie,b, c Qinfang Zhang*d, e

^a Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, China

^b National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China

^c Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian 223003, China

^d School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China

^e Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, Yancheng Institute of Technology, Yancheng 224051, China

*Corresponding author.
Email address: wyzong126@126.com (Y. Z. Wang)
*Corresponding author.
Email address: qfangzhang@gmail.com (Q.F. Zhang)

Table S1 The relative energies per unit cell for different configurations in eV of Ti_2BSO and Ti_2BSSe monolayers.

MBene	Ι	II	III	IV
Ti ₂ BSO	0	0.209	0.621	0.232
Ti ₂ BSSe	0	0.536	0.440	0.132

Table S2 The calculated lattice constant a_0 (Å), bond length l (Å), and Bader charge ΔQ (e) transferred from Ti to S (T) atom of Ti₂BSO and Ti₂BSSe monolayers.

Ti ₂ BOT	a_0	$l_{\rm Ti-S}$	$l_{\text{Ti-T}}$	$\Delta Q_{\rm S}$	ΔQ_{T}
Ti ₂ BSO	3.130	2.384	1.998	0.418	1.207
Ti ₂ BSSe	3.259	2.380	2.541	0.542	0.314

Table S3 The calculated elastic constants C_{ij} (N m⁻¹) and Young's modulus Y (N m⁻¹) of Ti₂BSO and Ti₂BSSe monolayers.

Ti ₂ BOT	$C_{11} = C_{22}$	C_{12}	C_{66}	Y
Ti ₂ BSO	132.21	26.88	52.66	126.74
Ti ₂ BSSe	135.99	19.13	58.43	133.29

Table S4 Diffusion constants (D) of Na and K on two surfaces of Ti₂BSO and Ti₂BSSe monolayers.

Surface	$D_{ m Na}~(m cm^2~s^{-1})$	$D_{\rm K}({\rm cm}^2~{\rm s}^{-1})$
Ti ₂ BSO-S	2.028×10^{-4}	2.889×10^{-3}
Ti ₂ BSO-O	8.569×10^{-7}	7.048 ×10 ⁻⁵
Ti ₂ BSSe-S	1.169×10^{-4}	7.778×10^{-4}
Ti ₂ BSSe-Se	1.933×10^{-4}	1.237×10^{-3}

Fig. S1 Side and top views of K adsorbed (a)-(b) Ti₂BSO and (c)-(d) Ti₂BSSe monolayers.

Fig. S2 The variations of free energy for (a) Na_4Ti_2BSO and (b) Na_4Ti_2BSSe (c) $K_{3.11}Ti_2BSO$ (d) $K_{3.11}Ti_2BSSe$ monolayers at 300 K during the AIMD simulations (insets are the final structures after simulations).