Supplementary Information for

Excited-State Dynamics of 3-Hydroxychromone in Gas Phase

Li Zhao^{1,*}, Xuehui Geng¹, Jiangyue Wang¹, Yuxuan Liu¹, Wenhui Yan¹, Zhijie Xu¹, Junsheng Chen^{2,*}

¹College of Science, China University of Petroleum (East China) Qingdao 266580,

Shandong, China

²Nano-Science Center & Department of Chemistry University of Copenhagen

Universitetsparken 5, 2100 KøbenhavnØ (Denmark)

*Corresponding to Li Zhao (<u>zhaoli282@upc.edu.cn</u>); OCRID: 0000-0003-2149-1702

Junsheng Chen (junsheng.chen@chem.ku.dk); OCRID: 0000-0002-2934-8030

CONTENTS

- a. Figure S1: The active spaces included in the CASSCF(16,13), CASSCF(12,10) and CASSCF(8,8) calculation levels for the most stable ground-state conformation of 3-HC system......p. S4

- d. **Figure S4:** The three low-lying electronic states energies relative to the ground state minimum of different optimized geometries at SA3-CASSCF(12,10)//6-31G* levelp.S6
- e. **Figure S5:** The variation of (a) C₇C₉ and (b) C₇O₁ bond lengths as functions of the simulation time......p.S6
- f. **Figure S6:** The variation of (a) O_2H_6 and O_1H_6 bond lengths; (b) dihedral angle $C_7C_9O_2H_67$ as functions of the simulation time. The trajectories were run using Newton-X package interfaced

with Gaussian 09 software......p.S6

- Figure S8: The variation of (a) O₂H₆ and O₁H₆ bond lengths; (b) dihedral angle C₇C₉O₂H₆ and (c) O₃C₈C₉H₅ as functions of the simulation time. The rosy balls represent the S₁→S₀ hopping events.
- Figure S9: The energy profiles constructed by LIIC method connecting the Franck-Condon geometry and (a) CI_{S2/S1/S0}-ESIPT; (b) CI_{S1/S0}-Pucker-Twist; and (c) CI_{S1/S0}-Opening computed at CASPT2//SA3-CASSCF(16,13)//6-31G** level.....p. S7
- j. **Figure S10:** The energy profiles constructed by LIIC method connecting the Franck-Condon geometry and (a) CI_{S2/S1/S0}-ESIPT; (b) CI_{S1/S0}-Pucker-Twist; and (c) CI_{S1/S0}-Opening computed at CASPT2//SA3-CASSCF(12,10)//cc-pVDZ level.....p.S8
- k. Figure S11: The energy profiles constructed by LIIC method connecting the Franck-Condon geometry and (a) CI_{S2/S1/S0}-ESIPT; (b) CI_{S1/S0}-Pucker-Twist; and (c) CI_{S1/S0}-Opening computed at CASPT2//SA3-CASSCF(12,10)//cc-pVTZ level.....p.S8
- Figure S12: The energy profiles constructed by LIIC method connecting the FC point and (a) CI_{S2/S1/S0}-ESIPT; (b) CI_{S1/S0}-Pucker-Twist; and (c) CI_{S1/S0}-Opening computed at SA3-CASSCF(12,10)// 6-31G* level.....p.S9

m.	Figure S13: The energy potential curve of the S_1 state constructed by scanning the O_1H_6 bond
	length from 2.199 Å to 0.999 Å (a) and $C_7C_9O_2H_6$ dihedral angle from 0° to 180° computed at
	TDDFT//B3LYP//6-31G* level
n.	Figure S14: The distributions of the O_1H_6 (a), $C_7C_9O_2H_6$ (b) and energy information (c) of the
	final structures of the trajectories remain in the S1 state at the end of simulationsp.S10
о.	Figure S15: The distributions of the S_1 energies of the final structures of the trajectories remain
	in the S1 state at the end of simulationsp.S10
p.	Table S1: The vertical excitation energies and relative energies (in eV) of critical points
	calculated at the CASPT2//SA3-CASSCF(12,10)//6-31G* levelp.S11
q.	Table S2: The vertical excitation energies and relative energies (in eV) of critical points
	calculated at the CASPT2//SA3-CASSCF(16,13)//6-31G**, CASPT2//SA3-
	CASSCF(12,10)//cc-pVDZ and CASPT2//SA3-CASSCF(12,10)//cc-pVTZ
	level,
r.	Table S3: Key geometrical parameters (bond lengths in Å, angles in degree) obtained at the
	SA3-CASSCF(12,10)//6-31G*, SA3-CASSCF(10,8)//6-31G*, SA3-CASSCF(8,8)//6-31G and
	SA3-CASSCF(6,6)//6-31G levels for several critical structures of the 3-HC
	systemp.S11

s.	lable	84-89:	The	Cartesian	coordinates	of	optimized	structures	calculated	at	SA3-
	CASS	CF(12,10)// 6-	31G* level.					p	. S1	3-S18

Figure S1 The active spaces included in the SA3-CASSCF(16,13)//6-31G** (top), SA3-CASSCF(12,10)//6-31G* (middle) and SA3-CASSCF(8,8) //6-31G (bottom) calculation levels for the most stable ground-state conformation of 3-HC system.

Figure S2 Orbitals and orbital promotions involved in forming the first two excited singlet states of 3-HC system.

Figure S3 The three low-lying electronic states energies relative to the ground state minimum of different optimized geometries at CASPT2//SA3-CASSCF(12,10)//6-31G* level (a), CASPT2//SA3-CASSCF(16,13)//6-31G** level (b), CASPT2//SA3-CASSCF(12,10)//cc-pVDZ (c) and CASPT2//SA3-CASSCF(12,10)//cc-pVTZ (d).

Figure S4 The three low-lying electronic states energies relative to the ground state minimum of different optimized geometries at SA3-CASSCF(12,10)//6-31G* level.

Figure S5 The variation of (a) C_7C_9 and (b) C_7O_1 bond lengths as functions of the simulation time.

Figure S6 The variation of (a) O_2H_6 and O_1H_6 bond lengths; (b) dihedral angle $C_7C_9O_2H_67$ as functions of the simulation time. The trajectories were run using Newton-X package interfaced with Gaussian 09 software.

Figure S7 (a)The time-dependent occupation of the S_1 and S_0 state of 3-HC system; (b) key bond lengths of the $S_1 \rightarrow S_0$ hopping points. Abscissa value of green, orange and purple star represents the C_9O_2 , O_1H_6 and C_7O_1 bond length of FC point, respectively. Their ordinate values are meaningless.

Figure S8 The variation of (a) O_2H_6 and O_1H_6 bond lengths; (b) dihedral angle $C_7C_9O_2H_6$ and (c) $O_3C_8C_9H_5$ as functions of the simulation time. The rosy balls represent the $S_1 \rightarrow S_0$ hopping events.

Figure S9 The energy profiles constructed by LIIC method connecting the Franck-Condon geometry and (a) $CI_{S2/S1/S0}$ -ESIPT; (b) $CI_{S1/S0}$ -Pucker-Twist; and (c) $CI_{S1/S0}$ -Opening computed at CASPT2//SA3-CASSCF(16,13)//6-31G** level.

Figure S10 The energy profiles constructed by LIIC method connecting the Franck-Condon geometry and (a) CI_{S2/S1/S0}-ESIPT; (b) CI_{S1/S0}-Pucker-Twist; and (c) CI_{S1/S0}-Opening computed at CASPT2//SA3-CASSCF(12,10)//cc-pVDZ level.

Figure S11 The energy profiles constructed by LIIC method connecting the Franck-Condon geometry and (a) CI_{S2/S1/S0}-ESIPT; (b) CI_{S1/S0}-Pucker-Twist; and (c) CI_{S1/S0}-Opening computed at CASPT2//SA3-CASSCF(12,10)//cc-pVTZ level.

Figure S12 The energy profiles constructed by LIIC method connecting the Franck-Condon geometry and (a) $CI_{S2/S1/S0}$ -ESIPT; (b) $CI_{S1/S0}$ -Pucker-Twist; and (c) $CI_{S1/S0}$ -Opening computed at SA3-CASSCF(12,10)// 6-31G* level.

Figure S13 The energy potential curve of the S₁ state constructed by scanning (a) the O1H6 bond length from 2.199 Å to 0.999 Å and (b) $C_7C_9O_2H_6$ dihedral angle from 0° to 180° computed at TDDFT//B3LYP//6-31G* level.

Figure S14 The distributions of the O_1H_6 (a) and $C_7C_9O_2H_6$ (b) of the final structures of the trajectories remain in the S_1 state at the end of simulations.

Figure S15 The distributions of the S_1 energies of the final structures of the trajectories remain in the S_1 state at the end of simulations. The black, red and blue star indicates the S_1 energy of FC point, energy barrier along the ESIPT process (in Figure 6(a)), and the S_1 energy of $CI_{S1/S0}$ -Pucker-Twist, respectively.

 Table S1 The vertical excitation energies and relative energies (in eV) of critical points calculated

 at the CASPT2//SA3-CASSCF(12,10)//6-31G* and SA3-CASSCF(12,10)//6-31G* level.

Geo.	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_2$	$\mathbf{S}_0 \rightarrow \mathbf{S}_3$	
S ₀ -cis-enol ^a	4.13	4.19	5.35	
S ₀ -cis-enol ^b	5.09	5.43		
S ₁ -cis-enol ^a	3.78	3.96		
S1-cis-keto ^a	1.63	1.79		
S_1 -trans-enol ^a	2.73	3.94		

 $^{a}\ CASPT2//SA4\text{-}CASSCF(12,10)//6\text{-}31G*; ^{b}\ SA3\text{-}CASSCF(12,10)//6\text{-}31G*$

 Table S2 The vertical excitation energies and relative energies (in eV) of critical points calculated

 at the CASPT2//SA3-CASSCF(16,13)//6-31G**, CASPT2//SA3-CASSCF(12,10)//cc-pVDZ and

 CASPT2//SA3-CASSCF(12,10)//cc-pVTZ level.

Geo.	(16,13)//6-	(16,13)//6-31G**		cc-pVDZ	(12,10)//cc-pVTZ	
	$S_0 {\rightarrow} S_1$	$S_0 {\rightarrow} S_2$	$S_0 \rightarrow S_1$	$S_0 {\rightarrow} S_2$	$S_0 {\rightarrow} S_1$	$S_0 \rightarrow S_2$
S ₀ -cis-enol	4.12	4.35	4.06	4.11	3.90	3.97
CI _{S2/S1} -Plane	3.77	4.03	3.72	4.06	3.61	3.78
CI _{S2/S1} -Pukcer-Twist	1.17	1.52	1.58	1.94	1.63	2.01
CI _{S2/S1/S0} -ESIPT	0.45	0.80	0.34	0.47	0.42	0.66
CI _{S1/S0} -Pucker-Twist	0.19	2.24	0.20	2.30	0.22	2.19
CI _{S1/S0} -Opening	0.22	1.37	0.23	1.35	0.29	1.33

Table S3 Key geometrical parameters (bond lengths in Å, angles in degree) obtained at the SA3-CASSCF(12,10)//6-31G*, SA3-CASSCF(10,8)//6-31G*, SA3-CASSCF(8,8)//6-31G* and SA3-CASSCF(6,6)//6-31G levels for several critical structures of the 3-HC system.

Geo.	Method	C_9O_2	O_2H_6	O_1H_6	C7C9	C_7O_1	$C_7C_9O_2H_6$	O ₃ C ₈ C ₉ H ₅
S ₀ -cis-enol	CASSCF(12,10) ^[a]	1.349	0.952	2.199	1.461	1.235	0.0	180.0
	CASSCF(10,8) ^[a]	1.352	0.952	2.198	1.462	1.198	0.0	180.0
	CASSCF(8,8) ^[a]	1.371	0.953	2.297	1.467	1.239	0.0	180.0
	CASSCF(6,6) ^[b]	1.358	0.973	2.128	1.445	1.235	0.0	180.0
S ₁ -cis-enol	CASSCF(12,10) ^[a]	1.344	0.953	2.147	1.480	1.248	0.0	180.0
	CASSCF(10,8) ^[a]	1.347	0.953	2.164	1.474	1.206	0.0	180.0
	CASSCF(8,8) ^[a]	1.379	0.949	2.431	1.439	1.242	0.0	180.0
	CASSCF(6,6) ^[b]	1.368	0.954	2.257	1.465	1.233	0.0	180.0
S ₀ -cis-keto	CASSCF(12,10) ^[a]	1.212	2.153	0.957	1.490	1.323	0.0	180.0
	CASSCF(10,8) ^[a]	1.220	2.120	0.957	1.444	1.323	0.0	180.0
	CASSCF(8,8) ^[a]	1.246	2.246	0.957	1.448	1.347	0.0	180.0
	CASSCF(6,6) ^[b]	1.258	2.119	0.961	1.437	1.328	0.0	180.0
S1-cis-keto	CASSCF(12,10) ^[a]	1.384	2.349	0.949	1.472	1.347	0.0	180.0
	CASSCF(10,8) ^[a]	1.391	2.326	0.949	1.393	1.347	0.0	180.0
	CASSCF(8,8) ^[a]	1.417	2.410	0.951	1.391	1.368	0.0	180.0
	CASSCF(6,6) ^[b]	1.401	2.401	0.952	1.391	1.365	0.0	180.0
S ₀ -trans-enol	CASSCF(12,10) ^[a]	1.350	0.947	3.655	1.472	1.209	180.0	180.0
	CASSCF(10,8) ^[a]	1.348	0.948	3.650	1.481	1.209	180.0	180.0
	CASSCF(8,8) ^[a]	1.370	0.950	3.667	1.476	1.233	180.0	180.0
	CASSCF(6,6) ^[b]	1.369	0.950	3.668	1.469	1.216	180.0	180.0
S ₁ -trans-enol	CASSCF(12,10)[a]	1.356	0.947	3.666	1.399	1.359	180.0	180.0
	CASSCF(10,8) ^[a]	1.351	0.948	3.640	1.436	1.372	180.0	180.0
	CASSCF(8,8) ^[a]	1.372	0.950	3.646	1.437	1.396	180.0	180.0
	CASSCF(6,6) ^[b]	1.367	0.950	3.692	1.484	1.242	180.0	180.0

	SA3-CA	ASSCF(12,10)/	/6-31G*		SA3-CAS	SCF(12,10)//6-	31G*
	Х	Y	Z		Х	Y	Z
С	-4.0453510459	-1.4426837932	0.000000000	С	-4.0757499855	-1.4563057200	0.000000000
С	-2.6597570914	-1.4883127248	0.000000000	С	-2.6253831535	-1.5161645904	0.0000000000
С	-1.9133134093	-0.2932926067	0.000000000	С	-1.8729466724	-0.3120159534	0.000000000
С	-2.5802578110	0.9221085045	0.0000000000	С	-2.5916544523	0.9299596434	0.0000000000
С	-3.9693421990	0.9817150969	0.000000000	С	-3.9723529695	0.9999647740	0.000000000
С	-4.6971790872	-0.1990811222	0.0000000000	С	-4.7518539722	-0.1907381395	0.0000000000
Н	-4.6187068417	-2.3508385544	0.0000000000	н	-4.6385658328	-2.3692552517	0.0000000000
Н	-2.1312638162	-2.4219237431	0.0000000000	н	-2.1130272367	-2.4560733933	0.000000000
С	-0.4475827261	-0.2999540281	0.000000000	С	-0.4401107297	-0.3004669583	0.0000000000
Н	-4.4499322715	1.9414774687	0.0000000000	н	-4.4312039591	1.9692694659	0.0000000000
н	-5.7708041177	-0.1556634528	0.0000000000	н	-5.8218917395	-0.1428807396	0.0000000000
С	-0.5748435023	2.1110509880	0.0000000000	С	-0.5559109374	2.1261693057	0.0000000000
С	0.1752311022	1.0194712536	0.0000000000	С	0.1904140450	1.0388008756	0.0000000000
н	-0.1783026712	3.1047635693	0.0000000000	н	-0.1904020756	3.1299647542	0.0000000000
0	0.2502277746	-1.3197411033	0.0000000000	о	0.2916718460	-1.3122089591	0.0000000000
0	1.5233870179	1.0795887774	0.0000000000	о	1.5299428583	1.0771981057	0.0000000000
Н	1.8527588031	0.1867051134	0.000000000	н	1.8401335569	0.1755182323	0.0000000000
0	-1.9219905622	2.0950087328	0.0000000000	о	-1.9281310450	2.0796629245	0.0000000000

Table S4 Cartesian coordinates of S_0 -min (left) and S_1 -min (right) of 3-HC cis-enol tautomer optimized at SA3-CASSCF(12,10)//6-31G* level.

	SA3-CA	ASSCF(12,10)//	/6-31G*		SA3-CAS	SCF(12,10)//6-	31G*
	Х	Y	Z		Х	Y	Z
С	-4.1263159459	0.8536014735	2.2990757314	С	-2.6799145415	-1.0848151493	0.0252561511
С	-2.7457379962	0.9068138159	2.3843454510	С	-1.3363579318	-1.4520979579	0.0294807565
С	-1.9607969248	0.9370682281	1.2195171862	С	-0.3302140510	-0.4760568966	0.0033062231
С	-2.5887405392	0.9128650966	-0.0143382153	С	-0.7166627544	0.8796009387	-0.0156080475
С	-3.9751118454	0.8594294826	-0.1155300087	С	-2.0378907971	1.2434498931	-0.0187801681
С	-4.7407792055	0.8299179248	1.0372256067	С	-3.0308925640	0.2620606047	-0.0007803209
н	-4.7243554802	0.8305508928	3.1911477800	н	-3.4417440262	-1.8425784233	0.0470031567
Н	-2.2472558743	0.9260270628	3.3343224568	н	-1.0528991392	-2.4868310207	0.0656645020
С	-0.4854853845	0.9939318728	1.2976688633	С	1.0752583119	-0.7863914128	-0.0054559839
Н	-4.4229647299	0.8421676909	-1.0912067198	н	-2.2866606524	2.2882863519	-0.0337413679
Н	-5.8118408937	0.7886354278	0.9598857522	н	-4.0646676310	0.5549778976	-0.0034613915
С	-0.5450091339	0.9916375774	-1.1452683608	С	1.5364707702	1.5895963182	-0.0004425182
С	0.1809050879	1.0196168065	-0.0154134275	С	1.9771090407	0.2870162693	0.0138295289
Н	-0.1269794076	1.0077498739	-2.1318483641	н	2.1612593267	2.4545354422	0.0173592210
0	0.1264559621	1.0175183042	2.3407283169	о	1.5252705606	-2.0718571408	0.0352790027
0	1.5305053585	1.0716349822	0.0163155671	о	3.3130528170	0.0333175567	0.0433629187
н	1.8911645105	1.0855359894	-0.8602256789	о	0.2065683493	1.8796458780	-0.0312705311
0	-1.8989947567	0.9394503406	-1.1756165117	н	1.5639355223	-2.4378955488	-0.8408358415

Table S5 Cartesian coordinates of S_0 -min (left) and S_1 -min (right) of 3-HC trans-enol tautomeroptimized at SA3-CASSCF(12,10)//6-31G* level.

	SA3-CA	ASSCF(12,10)/	/6-31G*	SA3-CASSCF(12,10)//6-31G*				
	Х	Y	Z		Х	Y	Z	
С	-2.6591481345	-1.0986636540	0.000000000	С	-4.1263159459	0.8536014735	2.2990757314	
С	-1.3648267361	-1.4763884886	0.0000000000	С	-2.7457379962	0.9068138159	2.3843454510	
С	-0.3249935572	-0.4859293631	0.000000000	С	-1.9607969248	0.9370682281	1.2195171862	
С	-0.7044550595	0.8599739022	0.000000000	С	-2.5887405392	0.9128650966	-0.0143382153	
С	-2.0687153594	1.2481407699	0.000000000	С	-3.9751118454	0.8594294826	-0.1155300087	
С	-3.0179584059	0.2870018376	0.000000000	С	-4.7407792055	0.8299179248	1.0372256067	
н	-3.4378088828	-1.8390548180	0.000000000	Н	-4.7243554802	0.8305508928	3.1911477800	
Н	-1.0838152366	-2.5118796928	0.000000000	Н	-2.2472558743	0.9260270628	3.3343224568	
С	1.0448237582	-0.7763975656	0.000000000	С	-0.4854853845	0.9939318728	1.2976688633	
Н	-2.3085649314	2.2946364940	0.000000000	Н	-4.4229647299	0.8421676909	-1.0912067198	
н	-4.0572657791	0.5596817303	0.0000000000	Н	-5.8118408937	0.7886354278	0.9598857522	
С	1.5148863166	1.5890269808	0.0000000000	С	-0.5450091339	0.9916375774	-1.1452683608	
С	2.0885839342	0.2877493661	0.000000000	С	0.1809050879	1.0196168065	-0.0154134275	
н	2.0987871654	2.4841376665	0.0000000000	Н	-0.1269794076	1.0077498739	-2.1318483641	
0	1.4878605059	-2.0233517868	0.000000000	0	0.1264559621	1.0175183042	2.3407283169	
0	3.2687172271	0.0079667586	0.0000000000	0	1.5305053585	1.0716349822	0.0163155671	
0	0.2080513133	1.8229704043	0.0000000000	Н	1.8911645105	1.0855359894	-0.8602256789	
Н	2.4441728017	-1.9809655554	0.000000000	0	-1.8989947567	0.9394503406	-1.1756165117	

Table S6 Cartesian coordinates of S_0 -min (left) and S_1 -min (right) of 3-HC cis-keto tautomer optimized at SA3-CASSCF(12,10)//6-31G* level.

	SA3-C	ASSCF(12,10)/	/6-31G*		SA3-CAS	SCF(12,10)//6-	31G*
	Х	Y	Z		Х	Y	Ζ
С	-1.9961203031	-0.2998239579	0.000000000	С	-4.0379640567	-1.1738602189	0.0008113185
С	-1.0628783276	0.8687678666	0.000000000	С	-2.6198635835	-1.1478615190	0.0015461200
С	0.3235167989	0.5299274178	0.000000000	С	-1.9385579455	0.0266483784	0.0020599984
С	1.3470921099	1.5114154364	0.0000000000	С	-2.6762102068	1.2403665004	-0.0000211128
С	2.7460888072	1.1060899850	0.000000000	С	-4.0428810001	1.2246460925	-0.0006135448
С	3.1037568663	-0.2841228350	0.000000000	С	-4.7349233905	-0.0107690673	-0.0000102883
С	2.0608905589	-1.2508399184	0.000000000	н	-4.5464876364	-2.1210411108	0.0009202890
С	0.7266889554	-0.8478151304	0.000000000	н	-2.0712234116	-2.0703094231	0.0016435586
0	-0.1794618552	-1.8000272655	0.000000000	С	-0.4527685911	0.0975454837	-0.0006607971
С	-1.5355629556	-1.5350609383	0.000000000	Н	-4.5739295981	2.1581430118	-0.0016498808
0	-3.2961371406	-0.0012698858	0.000000000	Н	-5.8100870705	-0.0112598308	-0.0002995566
0	-1.5273521785	1.9974901439	0.000000000	С	-0.6837536040	2.5524864155	-0.0003659134
н	-3.3513767031	0.9539471205	0.000000000	С	0.0195241352	1.3741772551	0.0008268992
н	-2.1142205688	-2.4322590357	0.000000000	Н	-0.2911597368	3.5427973872	-0.0003975705
н	2.2678038250	-2.3028916995	0.000000000	0	0.2115966005	-1.1169555441	-0.0033708168
н	4.1312976759	-0.5860267462	0.000000000	0	1.5667981577	1.6001260961	0.0057487168
н	3.5085019573	1.8602839995	0.000000000	Н	1.1522061171	-1.0503428978	-0.0045503348
Н	1.0757244876	2.5467057529	0.0000000000	0	-2.0702695088	2.4838312202	-0.0016170845

 $\label{eq:stable} \textbf{Table S7} Cartesian \ coordinates \ of \ CI_{S2/S1}-Plane \ (left) \ and \ CI_{S2/S1/S0}-ESIPT \ (right) \ optimized \ at \ SA3-extremely \ SA3-extremely \ and \ and \ SA3-extremely \ and \ an$

CASSCF(12,10)//6-31G* level.

	SA3-CA	ASSCF(12,10)//	/6-31G*		SA3-CA	SSCF(12,10)//	6-31G*
	Х	Y	Z		Х	Y	Z
С	-0.8975184862	2.5481052812	0.3171163683	С	-0.8592715185	2.3415533796	-1.2336595165
С	0.2988456475	1.8453565580	0.3427975284	С	0.1994044262	1.8542197370	-0.4448754222
С	0.3039861305	0.4857952363	0.0091612345	С	0.3877846105	0.4902037742	-0.3198888239
С	-0.8687173885	-0.1192700260	-0.4015468202	С	-0.5336732389	-0.4268531577	-0.8999464918
С	-2.0801715193	0.5596173597	-0.4140085314	С	-1.5852929218	0.0589319345	-1.6214619366
С	-2.0855624504	1.9004204700	-0.0502210271	С	-1.7203171614	1.4487196813	-1.8081431492
Н	-0.9132325711	3.5898076661	0.5794300765	н	-0.9966140673	3.3987015055	-1.3614684969
Н	1.2145561568	2.3323643177	0.6221403686	н	0.8597978901	2.5564285626	0.0873197172
С	1.4472833148	-0.4138530237	0.0776967031	С	1.5796925373	-0.1086937788	0.3148223779
Н	-2.9705675718	0.0543664708	-0.7370471361	н	-2.3028485506	-0.6227719291	-2.0357236266
Н	-3.0078995575	2.4512348435	-0.0784237808	н	-2.5467252276	1.8085533408	-2.3941152346
С	0.4816834998	-1.9263051740	-0.8112709642	С	0.1409981673	-1.8698059491	0.6514463275
С	1.2860935763	-1.7193630891	0.4662292569	С	1.5077656273	-1.3163921339	0.8179078442
Н	0.9610843934	-1.9504091865	-1.7805420868	н	-0.6016033415	-1.5810233721	1.3803237249
0	2.8164944161	0.1982916188	-0.0164011048	О	2.5368504835	0.6971881817	-0.2284072343
0	2.3355406789	-2.5207263866	0.7548842706	О	2.5784204178	-2.1919481965	0.6276568031
Н	2.0083494953	-3.3973949898	0.9112084934	н	2.7857976779	-2.5782199544	1.4652055218
0	-0.7770984546	-1.3906998166	-0.8501778789	0	-0.4069377803	-1.7461174154	-0.6362887640

Table S8 Cartesian coordinates of $CI_{S2/S1}$ -Pukcer-Twist (left) and $CI_{S1/S0}$ -Pucker-Twist (right) ofcytidine optimized at SA3-CASSCF(12,10)//6-31G* level

	SA3-CASSCF(12,10)//6-31G*									
	Х	Y	Z							
С	-0.0208325707	-1.1131421378	2.0333830316							
С	-0.1619198245	0.1615155380	1.4946206905							
С	-0.8926411737	0.3532963602	0.3181315035							
С	-1.4677410593	-0.7531478342	-0.3134355809							
С	-1.3360410719	-2.0153121984	0.2196131330							
С	-0.6111965168	-2.1983731497	1.3890241367							
Н	0.5349177191	-1.2567561083	2.9414497540							
Н	0.2824699513	1.0138119803	1.9738771870							
С	-0.9978952138	1.6773519304	-0.3049794266							
Н	-1.7949175356	-2.8427666840	-0.2879446105							
Н	-0.5087537331	-3.1872242927	1.7970300423							
С	-2.8217354239	0.4690690300	-1.8245432773							
С	-3.5029222364	1.2149516122	-0.9382587114							
Н	-2.8086235610	0.6617127280	-2.8826877783							
0	-0.7489608178	2.7537974968	0.1192552288							
0	-4.3121026710	2.1740022562	-1.3843025592							
Н	-4.4976332471	2.7867196664	-0.6850881686							
0	-2.1166530442	-0.6385263036	-1.5055194950							

Table S9 Cartesian coordinates of $CI_{S1/S0}$ -Opening optimized at SA3-CASSCF(12,10)//6-31G* level