Supporting Information for

Unveiling the Electronic Structure Peculiarities of Phosphine Selenides as NMR Probes for Non-covalent Interactions: An Experimental and Theoretical Study

Danil V. Krutin, Anton S. Zakharov, Elena Yu. Tupikina, Valeriya V. Mulloyarova*a

^a – Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia

* – Corresponding author: Dr. V.V. Mulloyarova (vmulloyarova@gmail.com)

Table of contents

Table S1	X-ray structural parameters of the considered crystalline R ₃ P=Se	3
Figure S1	Powder X-ray diffraction data of of triphenylphosphine selenide Me ₃ P=Se	4
Figure S2	Powder X-ray diffraction data of of triphenylphosphine selenide Et ₃ P=Se	5
Figure S3	Powder X-ray diffraction data of of triphenylphosphine selenide t -Bu ₃ P=Se	6
Figure S4	Powder X-ray diffraction data of of triphenylphosphine selenide $Ph_3P=Se$	7
Figure S5	Dependence of the δ_{33} component of ³¹ P chemical shift anisotropy tensor with the P=Se bond length in R ₃ P=Se in solid state	8
Figure S5	The ${}^{31}P$ and ${}^{77}Se$ NMR spectra of R ₃ P=Se in solution in CDF ₃ /CDClF ₂ at 100 K	9
Table S2	Geometric and spectral NMR parameters of phosphine selenides R ₃ P=Se in solution	10
Table S3	Calculated geometry and spectral NMR parameters of phosphine selenides R ₃ P=Se in vacuum	11
Figure S7	Dependences of the ∂P NMR with the electron density values (ρ) P=Se and P–C bonds	12
Figure S8	Dependences of the ∂P NMR with the kinetic (<i>G</i>) energy densities of electrons P=Se and P–C bonds	13
Figure S9	Dependences of the δ Se NMR with the electron density values (ρ) P=Se and P–C bonds	14
Figure S10	Dependences of the δ Se NMR with the kinetic (<i>G</i>) energy densities of electrons P=Se and P–C bonds	15

Figure S11	Dependences of the ${}^{1}J_{PSe}$ with the electron density Laplacian $\nabla^{2}\rho$ of electrons P=Se and P–C bonds	16
Figure S12	A graphical visualization of donor-acceptor (DA) interactions of natural bonding orbitals (NBOs) on an example of <i>n</i> -Bu ₃ PSe.	17
Figure S13	Dependences of the coupling constant ${}^{1}J_{PSe}$ with the energies of donor-acceptor interactions of natural bonding orbitals (NBO) in R ₃ P=Se (where R=Me, Et, <i>n</i> -Bu, <i>t</i> -Bu and Ph) in vacuum and in solution in CDCl ₃ .	18
Figure S14	Dependence of the ∂P NMR with the P–C bond length in R ₃ P=Se in vacuum, solution and solid state	19
Figure S15	Dependence of the δ Se NMR with the P–C bond length in R ₃ P=Se in vacuum, solution and solid state	20

CCDC	R	r(P–Se), Å	r(P_C) Å	\angle (CPC),	∠ (CPSe),
			I(I - C), A	degree	degree
MEPNSE01 [32]	Me	2.123	1.799	112.7	106.1
YOFTAR	Et	2.126	1.810	113.5	105.2
QIJFOE [26]	<i>t</i> -Bu	2.133	1.908	108.9	110.0
TPPHSE02 [33]	Ph	2.115	1.817	112.6	106.1
	Ph	2.113	1.818	112.9	106.0

Table S1. Geometry parameters of the considered crystalline phosphine selenides $R_3P=Se$ (R=Me, Et, *t*-Bu, Ph). All distances are given in Å, angles (\angle) – in degrees.

Figure S1. The powder X-ray patterns for studied polymorph of trimethylphosphine selenide Me₃P=Se(MEPNSE01). The space group $P2_1/m$, lattice parameters: a = 6.4683(4) Å, b = 7.8246(8) Å, c = 6.6154(6) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 90.423(5)^{\circ}$.

Figure S2. The powder X-ray patterns for studied polymorph of triethylphosphine selenide $Et_3P=Se(YOFTAR)$. The space group *P31c*, lattice parameters: a = b = 9.0487 Å, c = 6.5327 Å, $\alpha = \beta = 90^{\circ}$.

Figure S3. The powder X-ray patterns for studied polymorph of tris(*t*-butyl)phosphine selenide *t*-Bu₃P=Se (QIJFOE). The space group $Pa\overline{3}$, lattice parameters: a = b = c = 14.5317(2) Å, $\alpha = \beta = \gamma = 90^{\circ}$.

Figure S4. The powder X-ray patterns for studied polymorph of triphenylphosphine selenide Ph₃P=Se (TPPHSE02). The space group $P2_1/c$, lattice parameters: a = 18.451(3) Å, b = 9.6728(17) Å, c = 18.097(2) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 106.777(10)^{\circ}$.

Figure S5. Dependence of the δ_{33} component of ³¹P chemical shift anisotropy tensor with the P=Se bond length in studied phosphine selenides R₃P=Se (where R=Me, Et, *t*-Bu and Ph) in solid state. The spectral parameters were obtained by static NMR spectra, and the geometric parameters – by X-ray analysis.

Figure S6. The ³¹P and ⁷⁷Se NMR spectra of phosphine selenides $R_3P=Se$ (where R=Me, Et, *n*-Bu, *t*-Bu, Ph and MePh₂) in solution in CDF₃/CDClF₂ at 100 K. In red and blue colours the values of ³¹P and ⁷⁷Se NMR chemical shifts are marked respectively. In black color the values of coupling constant ¹*J*_{PSe} are given.

Table S2. Calculated (B3LYP/def2-TZVP) geometry and spectral NMR parameters of phosphine selenides R₃P=Se in solution. The distances are given in Å, angles (\angle) – in degrees. The ∂ P and ∂ Se are presented in ppm and coupling constant values ${}^{1}J_{PSe}$ – in Hz.

D	r(P–Se),	r(P–C),	r(C–C),	∠ (CPC),	δP,	∂Se,	$^{1}J_{\mathrm{PSe}},$
ĸ	Å	Å	Å	degree	ppm	ppm	Hz
Me	2.151	1.813		105.8	56.8	-289	680
Et	2.153	1.829	1.528	105.3	83.3	-491	680
<i>t</i> -Bu	2.174	1.929	1.540	108.9	132.6	-429	721
<i>n</i> -Bu	2.155	1.827	1.529	105.7	74.8	-439	674
Ph	2.149	1.820	1.397	106.5	75.5	-193	764
MeDha	2 147	1.819	1 307	105.0	65.5	220	710
	2.147	1.816	1.397	105.9	05.5	-239	/19

Table S3. Calculated geometry (PW6B95-GD3/def2-QZVP) and spectral (B97-2/pcsSeg-2) parameters of phosphine selenides R₃P=Se in vacuum. The distances are given in Å, angles (\angle) – in degrees. The δ^{31} P and δ^{77} Se are presented in ppm and coupling constant values J_{P-Se} – in Hz.

р	r(P–Se),	r(P–C),	∠ (CPC),	∠ (CPSe),	δ ³¹ P,	δ ⁷⁷ Se,	$^{1}J_{\rm PSe},$
ĸ	Å	Å	degree	degree	ppm	ppm	Hz
Me		1.809	104.1	114.5			
	2.090	1.809	104.1	114.5	32.0	-422	739
		1.809	104.0	114.5			
		1.821	104.9	113.0			
Et	2.096	1.821	104.4	114.3	57.1	-530	731
		1.820	105.2	114.1			
		1.819	105.0	113.1			
<i>n</i> -Bu	2.097	1.821	104.8	114.3	51.9	-509	729
		1.819	104.3	114.3			
<i>t</i> -Bu		1.901	109.3	109.6			
	2.117	1.900	109.3	109.7	100.5	-529	733
		1.901	109.3	109.7			
Ph		1.816	104.8	113.8			
	2.097	1.816	104.7	113.9	55.4	-434	779
		1.816	104.8	113.9			
MePh ₂		1.811 (Me)	103.5 (MPP)	113.8 (Me)			
	2.094	1.819 (Ph)	104.4 (PPP)	114.7 (Ph)	41.5	-491	777
		1.815 (Ph)	105.1 (PPM)	114.5 (Ph)			

Figure S7. Dependences of the ∂P NMR with the electron density values (ρ) at electron density critical points of type (3, -1) for P=Se and P–C bonds for R₃P=Se (where R=Me, Et, *n*-Bu, *t*-Bu, Ph and MePh₂). The ∂P was obtained by quantum chemical calculation (B97-2/pcsSeg-2) and experimentally (NMR in solution in CDCl₃).

Figure S8. Dependences of the ∂P NMR with the kinetic (*G*) energy densities of electrons at electron density critical points of type (3, -1) for P=Se and P–C bonds for R₃P=Se (where R=Me, Et, *n*-Bu, *t*-Bu, Ph and MePh₂). The ∂P was obtained by quantum chemical calculation (B97-2/pcsSeg-2) and experimentally (NMR in solution in CDCl₃).

Figure S9. Dependences of the δ Se NMR with the electron density values (ρ) at electron density critical points of type (3, -1) for P=Se and P–C bonds for R₃P=Se (where R=Me, Et, *n*-Bu, *t*-Bu, Ph and MePh₂). The δ P was obtained by quantum chemical calculation (B97-2/pcsSeg-2) and experimentally (NMR in solution in CDCl₃).

Figure S10. Dependences of the δ Se NMR with the kinetic (*G*) energy densities of electrons at electron density critical points of type (3, -1) for P=Se and P–C bonds for R₃P=Se (where R=Me, Et, *n*-Bu, *t*-Bu, Ph and MePh₂). The δ P was obtained by quantum chemical calculation (B97-2/pcsSeg-2) and experimentally (NMR in solution in CDCl₃).

Figure S11. Dependences of the ${}^{1}J_{PSe}$ with the electron density Laplacian $\nabla^{2}\rho$ at electron density critical points of type (3, -1) for P=Se and P–C bonds for R₃P=Se (where R=Me, Et, *n*-Bu, *t*-Bu, Ph and MePh₂). The J_{PSe} was obtained by quantum chemical calculation (B97-2/pcsSeg-2) and experimentally (NMR in solution in CDCl₃).

Figure S12. A graphical visualization of donor-acceptor (DA) interactions of natural bonding orbitals (NBOs) on an example of n-Bu₃PSe. The captions are made according to Table 3.

17

Figure S13. Dependences of the coupling constant ${}^{1}J_{PSe}$ with the energy of interaction between lone pairs (LP) of selenium atom and the BD* orbital of the P–C bond in studied phosphine selenides R₃P=Se (where R=Me, Et, *n*-Bu, *t*-Bu and Ph). NMR parameters were obtained by quantum chemical calculation in vacuum (B97-2/pcsSeg-2) and NMR spectroscopy in solution in CDCl₃. NBO analysis was carried by quantum chemical calculation in vacuum (PW6B95-D3/def2-QZVP).

Figure S14. Dependence of the ³¹P NMR isotropic chemical shift with the P–C bond length in studied phosphine selenides $R_3P=Se$ (where R=Me, Et, *n*-Bu, *t*-Bu, Ph and MePh₂) in solid state (green points), solution (orange points) and vacuum (blue points).

The data points obtained experimentally by MAS NMR and those calculated theoretically lie on the same correlation line (black). The points obtained for measurements in solution lie higher on their correlation line (orange), but at the same slope.

Figure S15. Dependence of the ⁷⁷Se NMR isotropic chemical shift with the P–C bond length in studied phosphine selenides $R_3P=Se$ (where R=Me, Et, *n*-Bu, *t*-Bu, Ph and MePh₂) in solid state (green points), solution (orange points) and vacuum (blue points).

The data points obtained for measurements in solid state and solution lie on the same correlation line (black). Only three points corresponding to $Et_3P=Se$ and *n*-Bu₃P=Se, in which the substituent is conjugated with the phosphorus atom, drop out from the general dependence. The points obtained for measurements in solution lie higher on their correlation line (orange), but at the same slope. For this dependence, only three points lie on the correlation line, corresponding to R₃P=Se, (where R=Me, Ph and *t*-Bu).