Supplementary Materials for: Exploring Flat-Band Properties in Two-Dimensional M₃QX₇ Compounds

Hai-Chen Wang⁰,¹ Tomáš Rauch⁰,² Andres Tellez,³ Ludger

Wirtz⁶,⁴ Aldo H. Romero⁶,^{3,4,*} and Miguel A. L. Marques⁶,[†]

¹Research Center Future Energy Materials and Systems of the University Alliance Ruhr, Faculty of

Mechanical Engineering, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany ²Friedrich-Schiller-University Jena, 07743 Jena, Germany

³Department of Physics, West Virginia University, Morgantown, WV 26506, USA

⁴Department of Physics and Materials Science, University of Luxembourg,

162a avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg

0.017

0.018

-2.13

-1.60

(Dated: June 17, 2024)

TABLE S1: Distance to the convex-hull $(E_{\text{hull}} \text{ in eV})$, formation energy	$\mathrm{Zr}_3\mathrm{Cl}_8$
$(E_{\text{form}} \text{ in eV})$, indirect band gap $(E_{\text{Gap}} \text{ in eV})$, magnetization per metal	$\mathrm{Sc_3IBr_7}$
atom (in $\mu_{\rm B}$), minimal dispersion ($D_{\rm min}$ in meV) of the band between	Mn_3Br_8
-3.0 to $+3.0$ eV around Fermi level, and the mean eigenvalue of this	$\mathrm{Sc}_{3}\mathrm{Br}_{8}$
flattest band relative to Fermi level (\overline{E} in eV). Note the D_{\min} values	$\mathrm{Zr}_3\mathrm{Br}_8$
listed are calculated on a coarse k -grid and therefore are underestimated.	$\mathrm{Mn_{3}I_{8}}$
All results obtained with the PBE functional. For completeness we also	In_3SeCl
include the case where X and Q are the same chemical element, leading	Sc ₃ BrC
to the composition M_3X_8 .	Sc_3ICl_7

Formula	$E_{\rm hull}$	$E_{\rm form}$	E_{Gap}	M	D_{\min}	\overline{E}
Fe ₃ I ₈	-0.010	-0.07	0.02	4.5	36	0.533
V ₃ Cl ₈	-0.008	-1.65	0.00	2.3	30	-0.140
V_3ICl_7	-0.007	-1.50	0.00	2.3	29	-0.119
Nb ₃ IBr ₇	-0.004	-0.85	0.33	0.4	59	-0.875
Ti ₃ ICl ₇	-0.001	-1.86	0.51	0.7	19	1.025
Ti_3BrCl_7	-0.001	-1.91	0.47	0.7	25	1.042
Nb_3BrCl_7	0.001	-1.60	0.24	0.3	29	-1.247
Nb_3Br_8	0.001	-0.90	0.34	0.4	58	-0.895
Ti_3Cl_8	0.001	-2.01	0.43	0.7	37	1.364
V_3Br_8	0.002	-0.86	0.00	2.3	26	2.235
Ti_3TeCl_7	0.003	-1.86	0.64	1.0	15	-2.390
V_3I_8	0.003	-0.46	0.00	2.3	33	2.218
$Nb_{3}Cl_{8}$	0.003	-1.70	0.25	0.3	20	-1.277
$Nb_{3}TeCl_{7}$	0.003	-1.58	0.75	0.0	20	-0.267
Mn_3Cl_8	0.003	-1.40	0.00	4.3	35	1.576
Nb_3ICl_7	0.003	-1.55	0.21	0.3	51	-1.226
Nb_3TeBr_7	0.004	-0.88	0.70	0.0	54	2.548
Nb_3SeCl_7	0.004	-1.64	0.80	0.0	20	-0.254
$\mathrm{Zr}_{3}\mathrm{ICl}_{7}$	0.004	-1.99	0.55	0.6	48	-0.218
Nb_3SCl_7	0.005	-1.73	0.85	0.0	23	-0.247
$Nb_{3}I_{8}$	0.006	-0.50	0.29	0.3	39	-0.896
Nb_3TeI_7	0.007	-0.52	0.61	0.0	30	-0.151
Nb_3SBr_7	0.007	-1.03	0.79	0.0	74	2.881
Fe_3Cl_8	0.009	-1.14	0.00	4.7	25	0.373
V_3 TeCl ₇	0.010	-1.47	0.07	2.0	11	1.988
$\mathrm{Ti}_{3}\mathrm{Br}_{8}$	0.011	-1.19	0.40	0.6	20	0.999
$\mathrm{Zr}_{3}\mathrm{BrCl}_{7}$	0.012	-2.04	0.54	0.7	30	-0.192
$\mathrm{Zr}_{3}\mathrm{IBr}_{7}$	0.012	-1.29	0.61	0.7	48	-0.157
Sc_3I_8	0.013	-1.20	0.00	0.4	32	0.889
${ m Ta_{3}TeI_{7}}$	0.013	-0.43	0.67	0.0	42	-0.154
Ni ₃ Cl ₈	0.015	-0.91	0.00	1.3	103	-2.391
${ m Ta_3SeI_7}$	0.015	-0.49	0.70	0.0	29	-0.152
$\rm Zr_3TeCl_7$	0.017	-1.98	0.37	1.0	11	-2.563

Mn_3Br_8	0.020	-0.67	0.00	4.3	17	1.672
$\mathrm{Sc_3Br_8}$	0.020	-1.65	0.00	0.4	22	1.029
$\mathrm{Zr}_{3}\mathrm{Br}_{8}$	0.021	-1.33	0.62	0.7	34	-0.137
Mn_3I_8	0.021	-0.33	0.00	4.3	27	1.472
In_3SeCl_7	0.022	-1.37	2.84	0.0	81	-0.764
Sc_3BrCl_7	0.022	-2.37	0.00	0.4	30	1.008
Sc_3ICl_7	0.023	-2.31	0.00	0.4	39	0.994
Ti ₃ I ₈	0.023	-0.74	0.00	1.3	23	1.460
Sc_3TeBr_7	0.024	-1.62	2.05	0.0	51	2.732
Sc_3Cl_8	0.024	-2.47	0.00	0.4	27	1.009
$\mathrm{Zr}_{3}\mathrm{I}_{8}$	0.025	-0.90	0.56	0.7	40	-0.278
$\rm Zr_3SeCl_7$	0.025	-2.04	0.43	1.0	16	-2.933
Sc_3SeCl_7	0.027	-2.41	2.81	0.0	29	-0.114
Sc_3TeCl_7	0.028	-2.33	2.20	0.0	22	-0.380
$Ta_3 TeCl_7$	0.028	-1.52	0.80	0.0	30	-0.287
Zr_3TeBr_7	0.030	-1.28	0.40	1.0	35	-2.424
Pm ₃ I ₈	0.032	-1.35	0.00	0.3	76	-2.465
Y_3 TeBr ₇	0.032	-1.79	2.78	0.0	33	-2.636
Ni ₃ Br ₈	0.032	-0.25	0.00	1.3	70	-0.570
$\mathrm{Er}_{3}\mathrm{TeBr}_{7}$	0.033	-1.77	2.90	0.0	51	-2.402
Fe ₃ Br ₈	0.033	-0.41	0.00	4.7	11	0.309
Ho ₃ TeBr ₇	0.033	-1.78	2.87	0.0	49	-2.444
$Dy_3 TeBr_7$	0.034	-1.78	2.86	0.0	28	-2.417
$\mathrm{Tb}_{3}\mathrm{TeBr}_{7}$	0.034	-1.78	2.84	0.0	22	-2.405
Y_3 SeCl ₇	0.035	-2.57	3.42	0.0	12	-2.388
Sm_3TeBr_7	0.035	-1.78	2.77	0.1	18	-0.109
Pm_3TeBr_7	0.035	-1.78	2.74	0.1	18	-2.186
Cu_3F_8	0.036	-1.68	0.06	1.7	25	0.855
$\mathrm{Tb}_{3}\mathrm{SeCl}_{7}$	0.036	-2.57	3.47	0.0	26	-0.120
Dy_3SeCl_7	0.036	-2.57	3.51	0.0	27	-0.119
Hf ₃ IBr ₇	0.036	-1.19	0.56	0.6	69	-0.295
Pd_3Cl_8	0.036	-0.79	0.00	0.7	112	-1.211
Ru ₃ I ₈	0.036	-0.03	0.00	0.7	48	-0.299
Y_3I_8	0.037	-1.34	0.00	0.3	85	-2.516
Ho_3SeCl_7	0.037	-2.57	3.55	0.0	17	-2.438
$In_3 TeCl_7$	0.037	-1.33	2.44	0.0	34	-0.935
$\mathrm{Er}_{3}\mathrm{SeCl}_{7}$	0.037	-2.57	3.60	0.0	8	-2.445
$\mathrm{Tm}_3\mathrm{SeCl}_7$	0.037	-2.57	3.65	0.0	22	-2.465
Y_3 TeCl ₇	0.038	-2.50	2.94	0.1	35	-0.193
Y_3SCl_7	0.038	-2.66	3.72	0.0	5	-2.107
$\mathrm{Er}_{3}\mathrm{TeCl}_{7}$	0.039	-2.49	3.06	0.0	31	-0.216
$\mathrm{Tm}_{3}\mathrm{TeCl}_{7}$	0.039	-2.49	3.08	0.0	23	-2.943
$\mathrm{Ho_{3}TeCl_{7}}$	0.039	-2.49	3.04	0.0	37	-2.584
$\mathrm{Dy}_{3}\mathrm{TeCl}_{7}$	0.040	-2.49	3.02	0.1	36	-2.547
$\mathrm{Tb}_{3}\mathrm{TeCl}_{7}$	0.040	-2.49	3.00	0.1	39	-2.508
$\mathrm{Tb}_3\mathrm{SCl}_7$	0.040	-2.66	3.78	0.0	19	-2.122

0.7

0.4

0.55

0.00

-0.162

0.968

21

26

* Aldo.Romero@mail.wvu.edu

[†] miguel.marques@rub.de

Dv _o SCl-	0.040	-2.66	3.81	0.0	20	-2 130	V _o BrCl ₋	0.071	-2.48	0.00	0.3	72	2 960
Th I	0.040	1 33	0.01	0.0	20 76	2.100	$T_3 DI OI_7$	0.071	0.38	0.00	0.0		0.787
10318	0.040	-1.00	0.00	0.1	70	2.004	1a318 11. D.	0.071	1.70	0.24	0.0	100	1 005
	0.040	-2.00	3.80	0.0	1	-2.149	HO ₃ Br ₈	0.071	-1.70	0.00	0.3	109	1.095
Sm_3SeCl_7	0.040	-2.55	3.36	0.0	13	-2.802	Sm_3ICl_7	0.072	-2.41	0.00	0.3	36	2.370
Sm_3I_8	0.041	-1.34	0.00	0.2	78	-2.481	$Pr_{3}IBr_{7}$	0.072	-1.72	0.00	0.3	62	2.261
Ce_3IBr_7	0.041	-1.69	0.00	1.3	2	1.186	$\mathrm{Tb}_{3}\mathrm{ICl}_{7}$	0.072	-2.42	0.00	0.3	41	2.401
$Nd_{3}I_{8}$	0.042	-1.35	0.00	0.3	74	-2.455	Ru_3Br_8	0.073	-0.21	0.00	0.7	66	0.377
Nd ₂ TeBr ₇	0.043	-1.78	2.71	0.1	8	-2.169	La ₂ IBr ₇	0.073	-1.82	0.40	0.4	2	0.512
CeoBro	0.043	-1 75	0.00	1.3	1	1 1 9 3	SmoBrCl-	0.073	-2.46	0.00	0.3	143	2 153
Sm. TeCl-	0.043	-2.48	2.04	0.1	16	-0.114	Ce.TeCl-	0.073	-2.10	0.00	1.0	210	_0.060
Nn I	0.049	0.91	0.00	4.2	10	0.005	V Cl	0.073	2.40	0.00	0.2	102	2.045
Mp_{318}	0.045	-0.01	0.00	4.5	12	0.095	$1_3 \cup 1_8$	0.074	-2.00	0.00	0.5	102	2.940
HI_3ICI_7	0.044	-1.92	0.50	0.7	67	-0.362	Co_3Br_8	0.075	-0.24	0.00	0.3	79	-0.209
Dy_3I_8	0.044	-1.32	0.00	0.0	89	-2.583	Dy_3ICl_7	0.075	-2.42	0.00	0.3	43	2.412
Ce_3ICl_7	0.044	-2.39	0.00	1.3	4	1.237	Tm_3IBr_7	0.075	-1.69	0.00	0.2	60	1.717
Rb_8O_3	0.045	-0.93	0.03	0.0	42	-1.449	Pm_3ICl_7	0.075	-2.41	0.00	0.3	52	2.362
Np ₃ TeCl ₇	0.045	-1.89	0.00	4.0	6	-1.884	$\mathrm{Er}_{3}\mathrm{Br}_{8}$	0.076	-1.75	0.00	0.3	45	1.703
Mo ₂ TeCl ₇	0.046	-1 17	0.00	0.3	69	-1 508	CosCl	0.076	-0.94	0.00	0.3	70	-0.394
	0.046	2.54	0.00	1.2	8	0.071	Sm Cl	0.076	2.56	0.00	0.0	161	2 102
$C_{3}C_{18}$	0.040	-2.04	0.00	1.0	0	1.040	D:: D::	0.070	1 77	0.00	0.0	101	2.132
Ce ₃ DrCl ₇	0.047	-2.44	0.00	1.5	3	1.240	Pr_3Dr_8	0.070	-1.77	0.00	0.5	121	2.005
$1 c_{3} l_{8}$	0.047	0.05	0.03	1.1	80	0.048	Ru ₃ Cl ₈	0.077	-0.88	0.00	0.7	80	-0.635
Ni ₃ I ₈	0.047	-0.02	0.00	1.3	49	-1.456	$\mathrm{Tb}_{3}\mathrm{BrCl}_{7}$	0.077	-2.47	0.00	0.3	118	2.065
Ho_3I_8	0.048	-1.31	0.00	0.0	80	2.015	Pm_3BrCl_7	0.079	-2.47	0.00	0.3	119	2.122
Pd_3Br_8	0.049	-0.21	0.00	0.7	81	-2.353	Ho_3ICl_7	0.079	-2.41	0.00	0.3	47	2.405
Pr ₂ I ₂	0.049	-1.36	0.00	0.3	71	-2.452	Dv ₂ BrCl ₇	0.080	-2.47	0.00	0.3	149	2.592
Hf TeCl-	0.049	-1.92	0.00	0.3	19	-2 917	TheCle	0.080	-2.57	0.00	0.3	173	2 103
Hf.Br.	0.010	1.02	0.56	0.6	51	0.250	Co-F-	0.081	2.01	0.00	37	25	2.100
$C_{\rm m} C_{\rm l}$	0.050	-1.24 1.47	0.00	0.0	51	1 617	C031'8 Tra Dr	0.081	-2.10	0.00	0.1	20	1 710
Cr_3Cl_8	0.050	-1.47	0.00	3.3	00	1.017		0.081	-1.74	0.00	0.2	30	1.710
HI_3I_8	0.050	-0.79	0.59	0.6	34	2.610	La_3Br_8	0.083	-1.87	0.35	0.4	1	0.547
Pr_3 TeBr ₇	0.050	-1.78	2.69	0.1	6	-2.151	Pr_3 TeCl ₇	0.083	-2.47	2.86	0.1	6	-0.275
$\mathrm{Hf}_{3}\mathrm{TeBr}_{7}$	0.050	-1.19	0.00	0.4	72	-0.156	Dy_3Cl_8	0.083	-2.57	0.00	0.3	146	2.128
Pm_3SeCl_7	0.051	-2.55	3.33	0.0	21	-0.124	$\mathrm{Er}_{3}\mathrm{ICl}_{7}$	0.084	-2.41	0.00	0.3	52	2.405
Cr_3Br_8	0.051	-0.70	0.00	3.3	14	1.869	Pm_3Cl_8	0.084	-2.56	0.00	0.3	171	2.170
Pm ₂ Br ₂	0.051	-1.77	0.00	0.3	76	2.142	Ho ₂ BrCl ₇	0.084	-2.47	0.00	0.3	136	2.600
PmaIBr-	0.052	_1 72	0.00	0.3	50	2 301	NieEe	0.084	_1 74	0.00	2.7	66	_1 /02
$V ID_n$	0.052	-1.72 1.79	0.00	0.0	61	2.001 2.105	$\Lambda_{\alpha} \mathbf{D}_{n}$	0.004	0.25	0.00	0.2	91	0 979
1_{3} ID17	0.052	-1.72	0.00	0.5	01	2.195	AS3D18	0.084	-0.55	0.70	0.5	51	2.373
$Er_{3}I_{8}$	0.052	-1.30	0.00	0.0	81	2.299	Sn_3I_8	0.086	-0.35	0.00	0.0	76	2.884
Pm_3TeCl_7	0.054	-2.48	2.91	0.1	14	-0.262	Ta_3Br_8	0.087	-0.80	0.28	0.3	75	-0.925
$\rm Sm_3 IBr_7$	0.055	-1.72	0.00	0.3	29	1.949	Ho_3Cl_8	0.087	-2.56	0.00	0.3	174	1.792
Hf_3BrCl_7	0.056	-1.97	0.47	0.7	41	-0.335	Pt_3Br_8	0.088	-0.13	0.00	0.7	56	-1.165
Y_3Br_8	0.057	-1.78	0.00	0.3	47	2.105	Tl_3Br_8	0.088	-0.43	0.00	0.0	62	-1.424
Sm ₂ Br.	0.057	-1.77	0.00	0.3	74	2.162	Er ₂ BrCl ₇	0.088	-2.46	0.00	0.3	177	2.195
Nn _a IBr ₋	0.057	-1 20	0.00	43	13	2,975	Coal	0.089	-0.00	0.00	0.3	86	-0.924
Cr I	0.057	0.34	0.00	2.2	20	1.671	Tm ICl	0.000	2.40	0.00	0.0	58	2 526
U1318	0.057	1 70	0.00	0.0	22 50	1.071		0.089	-2.40	0.00	0.0	107	1 570
$1 D_3 IBr_7$	0.058	-1.72	0.00	0.3	53 5 0	2.408	11853	0.090	-0.37	0.09	0.0	127	-1.578
Tm_3I_8	0.058	-1.29	0.00	0.0	76	2.307	La ₃ TeCl ₇	0.091	-2.58	2.76	0.1	3	2.682
$Pd_{3}F_{8}$	0.058	-1.48	0.06	0.8	91	-2.755	$\mathrm{Er}_{3}\mathrm{Cl}_{8}$	0.092	-2.56	0.00	0.3	160	1.818
Hg_3F_8	0.059	-1.45	0.00	0.6	18	-0.647	Tl_3Cl_8	0.092	-1.04	0.00	0.0	11	-2.024
Np_3Br_8	0.060	-1.25	0.00	4.3	13	2.232	$Nd_{3}ICl_{7}$	0.093	-2.41	0.00	0.3	50	2.330
Nd ₂ IBr ₇	0.060	-1.72	0.00	0.3	55	2.281	Bi ₂ Br.	0.093	-0.63	0.00	0.0	39	1.375
Np.ICl-	0.060	-1.90	0.00	43	10	2 230	Nd BrCl-	0.094	-2.46	0.00	0.3	131	2.078
Nd Br	0.000	1.77	0.00	0.3	100	2.200	Tm BrCl	0.001	2.10	0.00	0.0	197	2.610
$D_{13}D_{18}$	0.001	-1.77	0.00	0.0	105	2.100		0.094	-2.40	0.00	0.5	121	1 504
$Dy_{3}IBr_{7}$	0.001	-1.(1	0.00	0.2	81	2.342	Pd ₃ I ₈	0.094	-0.09	0.00	0.5	40	-1.504
La_3I_8	0.063	-1.44	0.00	0.4	2	0.530	$B_{13}IBr_7$	0.095	-0.59	0.00	0.0	66	1.277
$\mathrm{Tb}_{3}\mathrm{Br}_{8}$	0.063	-1.77	0.00	0.3	84	2.058	Pb_3Cl_8	0.096	-1.25	0.00	0.4	35	-0.787
Np_3BrCl_7	0.064	-1.95	0.00	4.3	12	1.928	Zn_3F_8	0.096	-2.10	0.00	0.7	22	-0.605
In ₃ I ₈	0.064	-0.42	0.00	0.0	112	-1.411	Nd_3Cl_8	0.097	-2.56	0.00	0.3	181	2.595
Np ₃ Cl ₈	0.065	-2.05	0.00	4.3	14	-0.308	In_3Br_8	0.097	-0.71	0.00	0.0	65	-2.377
Ho ₂ IBr-	0.066	-1.70	0.00	0.2	73	2.392	TmaCla	0.097	-2.56	0.00	0.3	143	1.853
Zr-SC1	0.067	_9 11	0.00	0.0	150	1 1 9 9	La ICl	0.007	_2.50	0.00	0.4	10	0.452
V IC1	0.007	-2.11	0.00	0.0	109	1.144 0.907	$Da_{31}\cup I_7$	0.091	1.02	0.09	0.4	70	1 290
	0.007	-2.42	0.00	0.3	41	2.397	B13BrUl7	0.099	-1.21	0.00	0.0	18	1.538
Ht_3Cl_8	0.067	-2.06	0.45	0.6	20	-0.290	Ht_3BiCl_7	0.100	-1.78	0.18	0.0	47	-1.978
$\mathrm{Dy}_{3}\mathrm{Br}_{8}$	0.067	-1.76	0.00	0.3	73	2.084	$\rm Zr_3SbCl_7$	0.100	-1.85	0.00	0.7	56	1.002
$\rm Nd_3 TeCl_7$	0.069	-2.47	2.88	0.1	10	-0.269	$\mathrm{Bi}_{3}\mathrm{Cl}_{8}$	0.100	-1.29	0.00	0.0	31	-2.988
$\mathrm{Er}_{3}\mathrm{IBr}_{7}$	0.070	-1.70	0.00	0.2	68	2.399	Rb_8Cd_3	0.101	0.07	0.00	0.0	57	1.564

$Pt_{3}Cl_{8}$	0.101	-0.72	0.00	0.7	83	-1.309	K _s Li ₃	0.173	0.17	0.00	0.0	82	0.526
Bi ICL-	0.102	-1 17	0.00	0.0	54	1 423	Caslo	0.173	-1 16	0.00	0.7	45	-0.656
TI So	0.103	0.20	0.00	0.0	125	1 3/6	Ca Br	0.176	0.62	0.00	0.0	115	2 012
1180C3	0.100	-0.20	0.21	0.0	120	1 500	$O_{-}O_{-}O_{-}$	0.170	-0.02	0.00	0.0	140	-2.012
RD_8Hg_3	0.103	-0.04	0.00	0.0	03	1.582	OS_3OI_8	0.177	-0.01	0.00	0.0	149	-0.304
La_3BrCl_7	0.103	-2.56	0.34	0.4	5	0.650	Zn_3Cl_8	0.179	-1.12	0.00	0.7	66	-1.329
Pt_3I_8	0.104	-0.04	0.00	0.7	56	-1.053	Si_3Te_8	0.181	0.15	0.00	0.0	212	-1.513
Cu_3Cl_8	0.106	-0.72	0.00	1.2	21	-1.263	$Al_{3}H_{8}$	0.182	0.06	0.00	0.0	1119	1.019
ProICl ₇	0 106	-2 40	0.00	0.3	40	2,936	BheHe	0.183	0.06	0.00	0.1	14	-2.885
Pr BrCl	0.106	2.10	0.00	0.0	193	2.000	Cd Br	0.184	0.50	0.00	0.1	83	1.834
113DIO17	0.100	-2.40	0.00	0.5	120	2.071	Cu3D18	0.184	-0.52	0.00	1.0	55	-1.004
11 ₃ F ₈	0.109	-2.04	0.00	0.0	125	1.449	11 ₃ F ₈	0.184	-3.40	0.00	1.3	56	0.259
Ta_3Cl_8	0.109	-1.62	0.16	0.3	35	-1.165	Al_3Br_8	0.185	-0.87	0.00	0.0	232	2.619
Pr_3Cl_8	0.109	-2.55	0.00	0.3	134	2.849	Hf_3HgCl_7	0.186	-1.68	0.00	0.0	29	-1.055
K ₈ Ag ₃	0.110	0.11	0.00	0.0	117	0.923	$Tc_{3}Cl_{8}$	0.187	-0.94	0.00	1.7	35	0.310
V ₂ F ₂	0 111	-3.04	0.00	2.3	38	-0.076	HøsBro	0.189	-0.18	0.00	0.6	47	-1 281
	0.112	1 01	0.00	0.0	30	2 863	Nb HcCl	0.100	1 29	0.00	0.0	30	0.035
13017	0.112 0.112	-1.31	0.00	0.0	00 CO	1.900	$T_{10311gO17}$	0.150	-1.52	0.41	0.0	00	1 650
Sb_3Br_8	0.113	-0.48	0.00	0.0	60	1.300	$1e_8As_3$	0.190	0.18	0.00	0.0	99	-1.652
In_3Cl_8	0.115	-1.40	0.00	0.0	136	0.269	Ga_3Cl_8	0.195	-1.32	0.00	0.0	626	0.181
$\mathrm{Sn}_3\mathrm{Br}_8$	0.115	-0.60	0.00	0.0	53	-1.084	K_8Cl_3	0.196	-1.03	0.00	0.0	283	1.628
In_3BrCl_7	0.116	-1.31	0.00	0.0	161	0.253	Ag_3I_8	0.198	0.06	0.00	0.0	66	-1.876
K _o Hg _o	0.116	-0.03	0.00	0.0	113	1.670	AsaSea	0.198	0.11	0.00	0.0	69	-0.500
Rh Na	0.117	0.12	0.00	0.0	102	0.468	C_{2} Br	0.100	1 47	0.06	0.7	25	0.570
10810a3	0.117	0.12	0.00	0.0	102	1.091		0.133	1.90	0.00	0.1	20	-0.019
$Ag_3 OI_8$	0.117	-0.57	0.00	0.9	23	-1.031	RD ₈ F ₃	0.199	-1.38	0.00	0.0	84	2.919
Ge_3I_8	0.119	-0.17	0.00	0.0	47	-2.369	K_8H_3	0.201	0.05	0.00	0.1	154	2.744
Mo_3Cl_8	0.120	-1.21	0.20	0.7	77	-2.043	Hg_3I_8	0.202	-0.04	0.00	0.0	76	-1.901
In_3ICl_7	0.121	-1.27	0.00	0.0	201	0.203	W_3Cl_8	0.202	-1.00	0.24	0.7	55	-2.530
K _o Cd ₂	0.121	0.08	0.00	0.0	97	2.428	Ga ₂ F ₂	0.203	-2.66	0.00	0.0	158	2.027
Ag.L.	0.122	0.05	0.00	0.0	84	1 005	Bu-F.	0.205	1.64	0.00	0.7	200	0.340
C F	0.122	-0.00	0.00	0.0	04	0.495		0.200	1.09	0.00	0.1	57	1 004
Ur ₃ F ₈	0.125	-2.80	0.00	3.3	24	0.423	$Ge_3 CI_8$	0.208	-1.08	0.00	0.4	57	-1.904
Tl ₈ Au ₃	0.124	0.09	0.00	0.0	145	-2.897	Pb ₃ F ₈	0.214	-2.33	0.00	0.0	14	-2.552
Cu_3Br_8	0.125	-0.11	0.00	0.0	124	-1.979	Se_3I_8	0.215	0.20	0.00	0.7	50	1.307
Au_3I_8	0.129	0.09	0.00	0.0	51	-1.257	Ga_3Bi_8	0.217	0.22	0.00	0.0	675	-1.404
Cu ₂ I ₈	0.131	0.06	0.00	0.0	37	-1.905	Ca_3Cl_8	0.217	-2.15	0.05	0.7	19	-0.838
TcaBra	0.133	-0.21	0.00	17	21	0.335	ShaTea	0.219	0.13	0.00	0.0	123	-0 448
Hf.ShCl_	0.134	1.81	0.00	0.7	71	1 283	Co.F.	0.210	3.07	0.01	13		0.851
DL D.	0.194	-1.01	0.00	0.1	11	0.444	0631 8 M. J	0.219	-0.00	0.01	1.5	0 07	0.001
$P D_3 D P_8$	0.134	-0.01	0.00	0.0	40	-0.444	1V1O ₃ 1 ₈	0.219	-0.09	0.05	0.7	20	-2.195
Tl_8Te_3	0.136	-0.11	0.48	0.0	200	-1.028	K_8F_3	0.219	-1.39	0.00	0.0	267	1.436
Tl_8Sb_3	0.137	0.12	0.00	0.0	320	2.806	Na_8H_3	0.224	0.08	0.00	0.0	443	0.756
Mg_3I_8	0.138	-0.72	0.00	0.3	74	-0.758	Zn_3Br_8	0.225	-0.50	0.00	0.5	113	-2.127
Au ₃ Br ₈	0.138	0.02	0.00	0.0	75	-1.610	Cu_3Te_8	0.226	0.19	0.00	0.0	87	-2.654
SnaCla	0.149	-1.25	0.00	0.0	33	-2.257	AlaCla	0.227	-1.67	0.00	0.0	198	2.509
Δ1.Ι.	0.1/0	-0.48	0.00	0.0	104	-2 687	Zr.F.	0.220	-3/13	0.80	0.6	71	_0.220
Sh ICI	0.140	1.00	0.00	0.0	74	1 496	$\overline{\mathbf{Z}}_{1318}$	0.225	-0.40	0.00	0.0	120	1 9 1 4
SU_3ICI_7	0.149	-1.02	0.00	0.0	14	1.450	ZII ₃ I ₈	0.231	-0.20	0.00	0.0	139	-1.044
Cd ₃ Cl ₈	0.151	-1.11	0.00	0.7	39	-0.977	As_3Cl_8	0.231	-0.90	0.00	0.0	85	1.562
$Pb_{3}I_{8}$	0.152	-0.38	0.00	0.0	57	-0.224	Al_3Te_8	0.233	-0.08	0.00	0.0	290	-2.748
Hg_3Cl_8	0.152	-0.73	0.00	0.7	21	-1.218	Tl_8F_3	0.233	-0.85	0.00	0.0	911	1.542
Tl_3I_8	0.154	-0.21	0.00	0.0	68	-2.135	In_8Ge_3	0.237	0.24	0.00	0.0	570	1.038
Ag ₂ Br ₂	0.154	-0.03	0.00	0.0	47	-2.072	W ₂ Br ₂	0.238	-0.22	0.06	0.7	57	0.322
MosBro	0.154	-0.44	0.03	0.7		0.735	LiaLa	0.240	-0.42	0.00	0.0	274	-2.067
Ω_{α} Br	0.154 0.154	0.09	0.00	0.1	58	0.190	D1318 B; F	0.240	-0.42 2.47	0.00	0.0	214	0.831
$U_{3}D_{8}$	0.154	0.08	0.23	0.0	017	0.162	D131-8	0.242	-2.41	0.00	0.0	204	0.001
Hg ₈ F ₃	0.156	-0.63	0.00	0.0	217	-2.867	P_3Se_8	0.248	0.20	0.00	0.0	357	-0.722
Sb_3Cl_8	0.157	-1.13	0.00	0.0	66	-2.446	$\mathrm{Tc}_{3}\mathrm{F}_{8}$	0.250	-1.88	0.47	1.7	14	-0.267
$\rm Zr_3HgCl_7$	0.160	-1.75	0.12	1.0	25	-0.936	Sn_3Bi_8	0.250	0.25	0.00	0.0	563	-1.170
$In_{3}F_{8}$	0.160	-2.62	0.00	0.0	289	1.987	Sn_3Te_8	0.252	0.09	0.00	0.0	155	-1.182
TlsAs	0.161	0.16	0.00	0.0	141	-1.516	GazAu	0.253	0.12	0.00	0.0	556	-1.720
Gaalo	0 161	-0.31	0.00	0.0	1/	_2 02/	Τρ. Δ.1.	0.253	0.18	0.00	0.0	221	_1 871
	0.101	0.01	0.00	0.0	600	2.024 2.050		0.200	0.10	0.00	0.0	10	1 001
Ga311g8	0.102	0.10	0.00	0.0	090	-2.009		0.204	-0.40	0.00	0.7	10	-1.004
Au ₃ Cl ₈	0.165	-0.52	0.00	0.5	22	-1.324	Na ₈ Br ₃	0.267	-0.59	0.00	0.0	127	-0.298
$\mathrm{Hg}_{8}\mathrm{Au}_{3}$	0.165	0.16	0.00	0.0	350	-1.442	$\rm Li_8H_3$	0.270	0.01	0.00	0.0	326	-1.309
$\mathrm{Fe}_{3}\mathrm{F}_{8}$	0.166	-2.60	0.00	4.7	19	1.770	Na_8Cl_3	0.271	-0.88	0.00	0.0	324	-0.331
Mg_3Br_8	0.167	-1.05	0.00	0.7	53	-0.705	Te ₃ O ₈	0.273	-1.12	0.00	0.0	114	-2.933
Zn ₂ Hg	0.168	0.17	0.00	0.0	656	-0.694	CdaAu	0.277	0.13	0.00	0.0	622	-0.258
Cdala	0.160	-0.30	0.00	0.0	50	_1 520	TLCL	0.278	_0 //	0.00	0.0	467	2 560
DLI;	0.109	0.02	0.00	0.0	40	-1.040	1 18013 Cn Co	0.210	0.44	0.00	0.0	101	1 104
n_{08Ll_3}	0.109	0.17	0.00	0.0	49	0.910	$5n_35e_8$	0.278	-0.01	0.14	0.0	83	-1.184
Ge_3Br_8	0.171	-0.41	0.00	0.0	96	-0.763	Sb_3Se_8	0.286	0.11	0.00	0.0	167	-0.445

As_3S_8	0.296	-0.14	0.00	0.0	174	-0.535
Ga_3Te_8	0.297	0.07	0.00	0.0	366	-2.578
Na ₃ I ₈	0.298	-0.39	0.00	0.0	239	-1.974
In_3Te_8	0.303	0.08	0.00	0.0	202	1.292
$\mathrm{Ge_3Bi_8}$	0.306	0.31	0.00	0.0	532	-2.099
Si_3I_8	0.308	-0.03	0.00	0.0	125	-1.565
Ba_8H_3	0.310	0.07	0.00	0.0	47	0.366
$\mathrm{Sb}_3\mathrm{F}_8$	0.311	-2.32	0.00	0.0	29	-2.652
$\mathrm{Re}_{3}\mathrm{Br}_{8}$	0.317	0.08	0.22	1.7	55	-2.904
$\mathrm{Bi}_8\mathrm{Sb}_3$	0.319	0.31	0.00	0.0	314	-1.641
$\rm Ni_3Hg_8$	0.319	0.32	0.00	0.0	53	-0.717
$\mathrm{Be_3Cl_8}$	0.323	-1.21	0.00	0.6	340	-1.431
$\mathrm{Be}_{3}\mathrm{I}_{8}$	0.323	-0.14	0.00	0.0	288	-0.560
$\mathrm{Hg}_{3}\mathrm{Te}_{8}$	0.334	0.24	0.00	0.0	271	-0.960
P_3S_8	0.344	-0.30	0.00	0.0	190	-0.663
Zn_3Te_8	0.353	0.10	0.06	0.0	238	-0.477
$\mathrm{Be_3Br_8}$	0.355	-0.48	0.00	0.0	291	-1.274
Al_3F_8	0.392	-3.38	0.00	0.0	381	2.308
I_3O_8	0.393	-0.32	0.00	0.0	84	-2.188
Hf_3F_8	0.402	-3.37	0.76	0.7	33	-0.759
H_3Pd_8	0.405	0.31	0.00	0.0	217	-2.875
As_3F_8	0.419	-2.00	0.00	0.0	91	-2.853
$\mathrm{Re}_3\mathrm{Cl}_8$	0.440	-0.64	0.34	1.7	28	-0.222
$\rm Si_3Br_8$	0.444	-0.29	0.00	0.0	103	-2.833
P_3Cl_8	0.445	-0.66	0.00	0.0	86	-2.863
Ag_8Te_3	0.480	0.44	0.00	0.0	86	-1.391
$\mathrm{Te}_{3}\mathrm{Au}_{8}$	0.526	0.47	0.00	0.0	49	-2.420
B_3I_8	0.740	0.69	0.00	0.0	311	2.261

TABLE S2. Calculated elastic constants in N/m.

Formula	C_{11}	C_{12}	C_{22}	C_{66}
Nb_3SeCl_7	62.9	17.2	59.6	19.1
Nb_3TeCl_7	53.1	16.1	53.3	18.5
Nb_3TeBr_7	52.8	16.0	53.5	18.8
Y_3 TeCl ₇	18.8	5.6	18.8	6.7
$\mathrm{Zr}_{3}\mathrm{TeCl}_{7}$	19.3	15.5	19.3	1.9
$Mo_3 TeCl_7$	27.9	52.7	27.8	-12.5
$In_3 TeCl_7$	24.3	10.7	24.1	6.9
Sb_3ICl_7	6.4	14.9	6.4	-4.2
Nd_3TeBr_7	16.8	4.0	16.8	6.2

FIG. S1. Electronic band structure of Nb_3SBr_7 from DFT (black) and interpolated by the tight-binding model (red).

FIG. S2. The band structures of Nb_3SBr_7 (left), Sb_3ICl_7 (middle), and Nb_3TeBr_7 (right) without and with spin-orbit coupling (SOC).

FIG. S3. Phonon band-structure of a few selected members of the M_3QX_7 family.