Supporting Information

Computational Screening of Defective BC₃-Supported

Single-Atom Catalysts for Electrochemical CO₂ Reduction

Renyi Li¹, Caimu Wang¹, Yaozhong Liu¹, Chengxiang Suo¹, Danyang Zhang¹,

Jiao Zhang¹, Wei Guo*,1,2

 ¹ Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
² Frontiers Science Center for High Energy Material (MOE), Beijing Institute of Technology, Beijing 100081, China

Note:

The $\Delta G(*OCHO)$ and $\Delta G(*COOH)$ are the free energy changes of the two intermediates after the first hydrogenation step of eCO₂RR (* denotes the catalyst):

* +
$$CO_2$$
 + H^+ + $e^- \rightarrow$ *OCHO
* + CO_2 + H^+ + $e^- \rightarrow$ *COOH

which can be obtained by the definition:

$$\Delta G(*OCHO) = G(*OCHO) - G(*) - G(CO_2) - G(H^+ + e^-)$$

$$\Delta G(*COOH) = G(*COOH) - G(*) - G(CO_2) - G(H^+ + e^-)$$

where G(*OCHO), G(*COOH) and G(*) are the free energies of *OCHO, *COOH and catalyst. G(CO₂) is the free energy of a CO₂ in gas phase. G(H⁺ + e⁻) is the free energy of the proton-electron pair, which can be calculated by setting the reference potential to the potential of the standard hydrogen electrode¹:

$$\mathrm{H^{+}} + \mathrm{e^{-}} \rightarrow 1/2\mathrm{H_{2}}$$

 ΔG of this reaction is expressed as below:

$$\Delta G = 1/2G(H_2) - G(H^+ + e^-),$$

when this reaction is in equilibrium and ΔG is equal to 0, i.e., $G(H^+ + e^-)$ is equal to half the free energy of H₂. Similarly, $\Delta G(^*H)$ can be calculated by the formula:

$$\Delta G(^{*}H) = G(^{*}H) - G(^{*}) - \frac{1}{2}G(H_2),$$

where G(*H) is the free energy of H adsorbed on catalyst. The comparison of $\Delta G(*OCHO \text{ or }*COOH)$ and $\Delta G(*H)$ enables the estimation of the selectivity between eCO₂RR and HER².

	Lattice constant (Å)	$l_{\text{C-C}}$ (Å)	$l_{\text{C-B}}$ (Å)	Band gap (eV)	
This work (PBE)	5.17	1.42	1.56	0.63	
Theor. $(PBE)^3$	5.17	1.42	1.56	0.65	
Theor. (PBE) ⁴	5.17	1.42	1.56	0.61	
Exp. ⁵	5.20±0.2	1.42	1.55	/	

Table S1 Structural parameters and band gap of BC₃ monolayer.

Table S2 The values of U - J parameters for PBE+U calculations^{6,7}.

ТМ	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
U – J	2.11	2.58	2.72	2.79	3.06	3.29	3.42	3.40	3.87	4.12

Figure S1. Band structures of (a) pristine BC₃, (b) V_C-BC₃ and (c) V_B-BC₃. The atomic structures

are shown below. The solid lines represent the lattice of the unit cell. The band structures are calculated using the unit cells of pristine BC_3 and defective BC_3 .

Figure S2. Structural models of (a) $TM@V_B-BC_3$ and (b) $TM@V_C-BC_3$. (c) Binding energy of TM SAs anchored on V_B-BC_3 and V_C-BC_3 .

Figure S3. Anchoring sites of TM SAs on (a) pristine BC₃ and (b) B-defective BC₃. Binding energy (ΔE_b) of (c) Pd, (d) Ag and (e) Re on pristine BC₃. (f) ΔE_b of TM SAs on pristine BC₃ and B-defective BC₃.

Figure S4. Magnetic moment (μ_B) of 3d TM SAs in TM@ BC₃ at PBE level and PBE+U level.

Figure S5. Free energy diagram of eCO₂RR to *OCHO and *COOH intermediates on pristine BC₃.

Figure S6. Free energy diagrams of eCO2RR to CO on TM@BC3.

Figure S7. Free energy diagrams of eCO₂RR to HCOOH on TM@BC₃.

Figure S8. Free energy diagrams of eCO₂RR to CH₃OH on TM@BC₃.

Figure S9. Free energy diagrams of eCO₂RR to CH₃OH on TM@BC₃.

Figure S10. Free energy diagrams of eCO₂RR to CH₃OH on TM@BC₃.

Figure S11. Free energy diagrams of eCO₂RR to CH₄ on TM@BC₃.

Figure S12. Free energy diagrams of eCO₂RR to CH₄ on TM@BC₃.

Figure S13. Free energy diagrams of eCO₂RR to CH₄ on TM@BC₃.

Figure S14. Volcano-shaped relation between the adsorption energy of *CHO and the U_L for CH_3OH and CH_4 production.

Figure S15. Electronic structures of Pd, Ag and Re@BC₃ SACs and CO₂ adsorption. Electron localization function (ELF) of (a) Pd, (b) Ag and (c) Re@BC₃ SACs. Charge density difference (CDD) between (d) Pd, (e) Ag, (f) Re SAs and B-defective BC₃. Projected density of states (pDOS) of (g) Pd, (h) Ag, and (i) Re d sub-orbitals. CDD between CO₂ and (j) Pd, (k) Ag and (l) Re@BC₃ SACs. pDOS of CO₂-2p and (m) Pd-4d, (n) Ag-4d and (o) Re-5d orbitals. Yellow and cyan regions indicate the accumulation and depletion of electron densities at the isosurface value of 0.002 e/Å^3 .

Figure S16. Electronic interpretation of HCOOH activity and selectivity on Pd@BC₃. (a) Charge density difference (CDD) between Pd@BC₃ and the adsorbed OCHO (Pd-OCHO). (b) Projected density of states (pDOS) of Pd-4d, O-2p and C-2p in the adsorption system (Pd-OCHO). The O-2p and C-2p states are derived from the *OCHO intermediate. (c) CDD between Pd@BC₃ and the *COOH intermediate (denoted by Pd-COOH). (d) pDOS of Pd-4d, O-2p and C-2p in the adsorption system (Pd-COOH). The O-2p and C-2p states are derived from the *COOH intermediate. Yellow and cyan regions indicate the accumulation and depletion of electron densities at the isosurface value of 0.002 e/Å^3 .

Figure S17. Band structures of (a) Ag@BC₃, (b) Pd@BC₃ and (c) Re@BC₃. The atomic structures are shown below. Re@BC₃ exhibits magnetism, and the band structures for both spin-up (grey) and spin-down (dark cyan) are plotted in the figure.

REFERENCES

(1) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. *The Journal of Physical Chemistry B* **2004**, *108*(46), 17886-17892, DOI: 10.1021/jp047349j.

(2) Xudong Cui, W. A.; Xiaoyang Liu, H. W.; Yong Men, J. W. C₂N-graphene supported single-atom catalysts for CO₂ electrochemical reduction reaction: mechanistic insight and catalyst screening. *Nanoscale* **2018**, *10*(32), 15262-15272, DOI: 10.1039/C8NR04961K.

(3) Ou, J.; Kang, X.; Duan, X. In silico design of single transition metal atom anchored defective boron carbide monolayers as high-performance electrocatalysts for the nitrogen reduction reaction. *Nanoscale* **2022**, *14*(32), 12823-12829, DOI: 10.1039/d2nr02796h.

(4) Wang, Y.; Zhou, N.; Li, Y. Electrochemical catalytic mechanism of single transition metal atom embedded BC₃ monolayer for oxygen reduction and evolution reactions. *Chem. Eng. J.* **2021**, *425*, 130631, DOI: 10.1016/j.cej.2021.130631.

(5) Yanagisawa, H.; Tanaka, T.; Ishida, Y.; Matsue, M.; Rokuta, E.; Otani, S.; Oshima, C. Phonon Dispersion Curves of a BC₃ Honeycomb Epitaxial Sheet. *Phys. Rev. Lett.* **2004**, *17*(93), 177003, DOI: 10.1103/PhysRevLett.93.177003.

(6) Liu, J.; Smith, S. C.; Gu, Y.; Kou, L. C—N Coupling Enabled by N—N Bond Breaking for Electrochemical Urea Production. *Adv. Funct. Mater.* **2023**, *33*(47), DOI: 10.1002/adfm.202305894.

(7) Xu, H.; Cheng, D.; Cao, D.; Zeng, X. C. Revisiting the universal principle for the rational design of single-atom electrocatalysts. *Nature Catalysis* **2024**, *7*(2), 207-218, DOI: 10.1038/s41929-023-01106-z.