A systematic investigation of chromium and vanadium impurities in Janus Ga₂SO monolayer towards spintronic applications

Duy Khanh Nguyen,^{1,2} Nguyen Thanh Tien,³ J. Guerrero-Sanchez,⁴ and D. M. Hoat^{5,6,*}

¹Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam

²Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam

³College of Natural Sciences, Can Tho University, 3-2 Road, Can Tho City 900000, Vietnam

⁴Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Apartado Postal 14, Ensenada, Baja California, Código Postal 22800, Mexico

⁵Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi 100000, Viet Nam

⁶Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam

*Corresponding author: dominhhoat@gmail.com

Figure S1: Spin density (Iso-surface value: $0.02 \ e/Å^3$) in (a) Cr_s, (b) Cr_o, (c) V_s, and (d) V_o system.

Figure S2: Spin-polarized band structure (The Fermi level is set to 0 eV) of (a) Cr_S , (b) Cr_O , (c) V_S , and (d) V_O system.

Figure S3: Energy of magnetic state transition in Ga₂SO monolayer doped with (a-b) Cr atoms and (c-d) V atoms at Ga1 sublattice.

Figure S4: Energy of magnetic state transition in Ga₂SO monolayer doped with (a-b) Cr atoms and (c-d) V atoms at Ga2 sublattice.