Functionality Optimization for Effective Singlet Fission Coupling Screening in the Full-Dimensional Molecular and Intermolecular Coordinate Space - Supporting Information

Johannes Greiner^{*a,b*}, Anurag Singh^{*a,b*} and Merle I. S. Röhr^{**a,b*}

^a Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074 Würzburg, Germany. E-mail: merle.roehr@uni-wuerzburg.de
^b Julius-Maximilians-Universität Würzburg, Institute of Physical and Theoretical Chemistry, Am Hubland, 97074 Würzburg, Germany.

Contents

1	Validation of Overlap Approximation	1
2	Analysis of all 500 optimized PBI dimers	2
3	Determining an Optimal Value for ω 3.1 Model system: ethene 3.2 Actual system: PBI	22 22 22
4	Stability of PCA and K-Means Clustering Outcomes Under Variable Parameters	23
5	Influence of Twisting on Effective SF Coupling	28
6	Davydov splitting	29

1 Validation of Overlap Approximation

Figure 1: Overlap scan covers the region from $\Delta X = 0.0$ Å to 4.0 Å and from $\Delta Y = 0.0$ Å to 2.0 Å with a step size of 0.1 Å at an interplanar distance of $\Delta Z = 3.5$ Å.

We performed scans of $|T_{RP}|^2$ as a function of the parallel displacement of two perylene bismide molecules stacked cofacially (see 1). The scan covers the region from $\Delta X = 0.0$ Å to 4.0 Å and from $\Delta Y = 0.0$ Å to 2.0 Å with a step size of 0.1 Å at an interplanar distance of $\Delta Z = 3.5$ Å. The orbitals were generated using AM1-HF calculation.

2 Analysis of all 500 optimized PBI dimers

Table 1: 500 optimized PBI dimer configurations, ordered from highest to lowest effective SF coupling. **id**: index of the original trajectory. **translation** (**x**,**y**,**z**): Relative intermolecular translation in Å. **rotation** (**x**,**y**,**z**): Relative intermolecular rotation in degree (due to symmetry the angle is always positive and lower than 180°). **curvature** (**A**,**B**): mean curvature measured along two parallel lines along the long axis of PBI in $1 \times 10^{-3} \text{ Å}^{-2}$. **twist** (**A**,**B**): dihedral angle between outer carbons along the long axis of PBI in degrees. **rate:** effective SF coupling calculated with the overlap approximation. ΔE : AM1 stabilization energy of the dimer with respect to two non-interacting monomers. **steps:** Optimisation steps until convergence. Maximal step number has been set to 300.

ronk	id	t	ranslation			rotation		curv	ature	tw	vist	rata	ΔF	stans
Tallk	iu	Х	у	Z	х	У	Z	A	В	A	B	Tate	ΔL	steps
1	114	-0.40	-0.67	3.07	6.1	6.9	53.8	10.6	-0.7	24.3	15.7	4.06×10^{-7}	0.19	51
2	222	-0.40	-0.67	3.07	7.7	7.9	53.5	12.5	-0.8	26.0	14.9	3.99×10^{-7}	0.19	53
3	252	-0.48	0.34	3.40	174.9	7.0	178.7	-22.6	23.5	9.5	1.8	3.95×10^{-7}	0.33	89
4	22	-0.52	0.29	3.38	174.6	6.4	178.5	-20.3	23.6	9.0	2.8	3.92×10^{-7}	0.32	77
5	31	0.47	-0.70	3.11	172.0	8.0	125.6	8.9	1.0	27.0	15.3	3.90×10^{-7}	0.12	58
6	489	0.50	-0.66	3.13	172.3	10.6	124.8	10.2	2.8	28.1	14.6	3.90×10^{-7}	0.10	113
7	498	-0.43	-0.74	3.07	7.8	7.6	53.6	9.6	-1.1	28.6	13.0	3.88×10^{-7}	0.18	92
8	395	-0.14	0.73	3.13	1.3	0.9	54.6	9.8	1.1	26.3	15.3	3.80×10^{-7}	0.18	59
9	192	-0.08	0.66	3.19	0.6	5.2	53.2	10.0	3.7	27.3	18.0	3.79×10^{-7}	0.16	61
10	224	-0.48	-0.70	3.14	9.3	11.1	55.0	8.9	2.3	27.0	16.3	3.78×10^{-7}	0.15	65
11	316	0.12	0.68	3.18	179.9	4.7	126.4	8.7	1.5	28.2	17.1	3.75×10^{-7}	0.10	52
12	351	0.50	-0.70	3.14	170.7	11.2	124.4	9.4	2.7	26.6	17.2	3.73×10^{-7}	0.09	54
13	495	0.51	-0.67	3.14	170.4	11.6	125.0	7.6	0.9	29.1	15.8	3.71×10^{-7}	0.09	54
14	55	-0.14	0.62	3.20	0.7	4.6	54.6	8.8	2.2	27.5	16.6	3.63×10^{-7}	0.15	76
15	141	-0.49	0.26	3.42	174.0	7.7	179.5	-23.4	22.6	7.4	4.9	3.54×10^{-7}	0.25	70
16	339	1.04	0.22	3.34	171.7	8.7	179.5	-20.2	24.2	8.2	9.5	3.48×10^{-7}	0.27	43
17	256	-0.90	-0.15	3.36	6.8	6.5	0.7	-19.9	25.4	5.0	8.7	3.46×10^{-7}	0.34	95
18	84	1.04	0.19	3.36	172.4	8.8	179.7	-20.9	26.8	7.1	9.8	3.44×10^{-7}	0.26	60
						Со	ntinued o	n next pag	e					

rank	id	t	ranslation			rotation		curva	ature	tw	ist	rate	ΔF	stens
Talik	iu	Х	у	Z	Х	У	Z	А	В	Α	В	Tate	ΔL	steps
19	177	1.00	0.10	3.34	173.6	8.0	178.7	-19.5	25.7	3.9	11.6	3.40×10^{-7}	0.26	227
20	451	-0.42	-1.02	2.84	178.7	2.3	121.8	18.1	1.4	20.8	4.1	3.34×10^{-7}	0.30	105
21	5	-0.42	-1.07	2.82	175.0	0.4	122.6	15.4	-1.6	22.2	3.6	3.33×10^{-7}	0.30	66
22	32	1.87	-1.69	3.00	5.1	0.9	56.1	3.0	3.8	25.6	9.4	3.22×10^{-7}	0.13	52
23	44	-1.80	-1.71	2.93	7.3	3.8	64.3	-7.6	10.2	0.3	1.6	3.22×10^{-7}	0.28	69
24	361	-1.79	-1.62	2.94	9.4	4.4	65.0	-3.8	6.8	0.4	1.6	3.22×10^{-7}	0.28	65
25	207	-0.14	1.10	2.86	175.4	7.3	121.9	15.4	0.6	24.2	2.2	3.22×10^{-7}	0.27	61
26	480	1.88	-1.69	3.00	4.5	0.5	55.9	3.6	4.6	25.9	9.8	3.20×10^{-7}	0.13	59
27	317	-1.79	-1.67	2.93	8.7	4.3	65.4	-3.3	7.9	0.8	1.7	3.19×10^{-7}	0.28	63
28	302	1.88	-1.69	2.99	5.3	0.9	56.0	3.6	3.7	25.6	9.1	3.18×10^{-7}	0.13	73
29	402	1.87	-1.68	3.00	4.7	0.7	56.1	3.1	4.4	25.5	9.7	3.17×10^{-7}	0.13	56
30	284	1.87	-1.68	3.01	5.1	0.9	56.0	3.2	4.4	25.8	10.0	3.15×10^{-7}	0.13	62
31	138	2.18	1.66	2.80	5.1	5.2	57.2	1.4	3.1	24.9	9.6	3.15×10^{-7}	0.13	47
32	312	-2.12	1.68	2.84	177.1	3.7	122.5	4.7	7.3	25.2	9.2	3.11×10^{-7}	0.16	138
33	238	1.86	-1.52	3.08	9.5	6.0	56.6	-2.9	1.7	21.4	13.4	3.11×10^{-7}	0.14	86
34	86	1.79	1.70	2.93	172.4	4.0	114.9	-6.1	8.1	0.3	1.2	3.09×10^{-7}	0.19	97
35	124	-1.78	-1.74	2.90	5.7	3.5	65.4	-4.9	8.0	0.5	1.4	3.04×10^{-7}	0.27	53
36	375	1.86	-1.46	3.11	7.9	5.7	57.1	-5.0	1.8	20.2	13.6	3.02×10^{-7}	0.13	76
37	441	-1.75	-1.58	2.98	14.0	5.3	64.5	-3.2	8.6	4.8	3.6	2.96×10^{-7}	0.21	45
38	250	2.20	1.65	2.83	0.0	1.6	56.1	-1.3	3.0	25.9	14.6	2.96×10^{-7}	0.12	53
39	233	-1.83	-1.57	3.10	169.9	6.4	124.0	2.2	4.0	25.6	13.6	2.93×10^{-7}	0.15	66
40	328	-1.92	-1.66	2.97	6.0	0.4	54.3	2.6	4.4	29.1	14.9	2.89×10^{-7}	0.36	71
41	381	-1.83	-1.58	3.10	168.9	6.8	123.5	-0.2	2.1	23.5	13.5	2.89×10^{-7}	0.14	61
42	64	1.86	-1.51	3.11	8.9	6.0	57.2	-5.3	2.8	19.9	14.2	2.89×10^{-7}	0.12	86
43	146	1.91	-0.48	-3.08	166.3	2.2	115.5	-1.6	-2.6	9.9	13.0	2.86×10^{-7}	0.41	97
44	230	2.16	1.58	2.88	0.3	0.9	56.6	-1.3	4.0	24.1	13.5	2.86×10^{-7}	0.11	66
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curv	ature	tw	ist	rate	ΔF	stens
Talik	iu	Х	у	Z	Х	У	Z	A	В	Α	В	Tate	ΔD	sicps
45	53	1.79	1.69	2.97	169.3	4.7	115.0	-5.8	7.5	0.6	4.3	2.84×10^{-7}	0.13	65
46	194	-1.76	-1.57	3.01	15.6	5.8	64.8	-0.8	8.3	1.4	4.6	2.84×10^{-7}	0.20	93
47	333	-1.92	-1.64	2.97	7.0	0.4	54.1	3.3	5.7	30.0	12.6	2.83×10^{-7}	0.36	73
48	82	-0.67	-2.62	2.72	8.3	0.2	66.5	-1.7	8.5	5.5	2.1	2.83×10^{-7}	0.21	50
49	163	-3.99	0.07	3.19	179.2	2.2	179.9	-19.1	18.9	2.9	5.4	2.82×10^{-7}	0.29	42
50	404	-2.27	1.66	2.70	3.9	7.0	54.5	3.3	5.3	30.0	14.4	2.81×10^{-7}	0.34	56
51	1	0.76	2.66	2.66	166.2	2.2	113.5	-1.4	7.8	7.2	2.5	2.79×10^{-7}	0.14	49
52	386	-3.96	0.05	3.21	178.7	2.3	179.8	-18.1	17.2	1.4	3.8	2.77×10^{-7}	0.29	74
53	154	4.05	0.16	3.15	0.1	0.9	0.8	-22.8	19.0	4.9	6.9	2.75×10^{-7}	0.23	65
54	349	1.90	-0.45	3.09	165.0	2.6	115.1	2.4	1.6	11.2	13.7	2.74×10^{-7}	0.40	62
55	346	-4.00	0.06	3.19	176.0	2.1	179.9	-20.8	19.8	3.0	7.2	2.74×10^{-7}	0.28	65
56	314	4.06	0.16	3.12	5.5	0.8	0.6	-20.8	20.2	7.2	6.5	2.72×10^{-7}	0.23	53
57	490	-0.68	2.46	2.89	2.7	2.1	65.9	-5.6	11.0	2.0	1.5	2.68×10^{-7}	0.17	39
58	3	-4.01	0.07	3.17	179.3	1.9	179.4	-19.0	18.4	3.9	5.4	2.65×10^{-7}	0.28	50
59	418	-3.98	0.03	3.21	178.2	1.9	179.4	-20.6	19.2	2.2	3.3	2.65×10^{-7}	0.27	39
60	376	-2.29	1.68	2.71	2.1	6.7	54.7	2.9	6.7	29.9	13.5	2.65×10^{-7}	0.33	72
61	283	-3.96	-0.07	3.23	176.7	3.0	179.3	-20.5	19.3	0.6	8.4	2.64×10^{-7}	0.27	54
62	83	-3.96	0.06	3.22	177.2	2.4	179.8	-18.7	17.7	1.6	3.2	2.62×10^{-7}	0.27	85
63	178	-3.97	-0.04	3.23	177.5	2.0	179.3	-19.9	18.2	2.0	3.1	2.59×10^{-7}	0.27	104
64	214	4.01	0.15	3.18	0.6	1.5	0.1	-22.0	18.5	3.5	6.7	2.59×10^{-7}	0.22	43
65	301	-2.24	1.71	2.72	2.8	6.6	55.9	3.2	7.3	28.5	12.1	2.58×10^{-7}	0.32	59
66	481	0.75	2.62	2.77	173.9	0.1	113.8	-2.9	9.8	3.7	1.4	2.57×10^{-7}	0.10	43
67	266	4.07	0.14	3.13	1.1	0.0	0.8	-23.3	18.8	6.4	2.6	2.57×10^{-7}	0.21	86
68	118	2.28	1.74	2.68	175.3	10.2	124.0	2.3	5.1	29.5	12.8	2.56×10^{-7}	0.24	53
69	388	1.95	-0.53	3.11	161.4	5.9	115.2	-1.8	4.2	11.7	14.7	2.54×10^{-7}	0.34	66
70	111	2.30	1.76	2.67	177.7	9.0	125.1	7.7	4.8	30.9	12.6	2.53×10^{-7}	0.23	53
						Co	ntinued o	n next pag	e					·

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curva	ature	tw	ist	rate	ΔF	stens
Tallk	iu iu	Х	у	Z	Х	У	Z	А	В	Α	В	Tate		steps
71	151	-2.26	1.72	2.71	2.8	8.5	56.3	2.2	5.6	28.3	11.3	2.52×10^{-7}	0.29	37
72	52	4.06	0.00	3.20	3.7	1.3	1.8	-23.0	22.5	1.9	4.5	2.50×10^{-7}	0.21	65
73	29	-1.80	0.63	3.13	8.7	1.9	64.5	-0.8	1.4	6.9	14.2	2.50×10^{-7}	0.40	56
74	446	1.94	-1.69	2.98	174.1	2.1	125.8	5.0	6.3	28.0	12.6	2.49×10^{-7}	0.24	92
75	343	1.97	-0.48	3.11	160.9	5.8	115.5	0.0	1.6	12.7	14.9	2.47×10^{-7}	0.33	52
76	94	-3.96	-0.09	3.24	177.3	2.9	178.9	-20.5	20.1	1.0	6.8	2.46×10^{-7}	0.25	173
77	476	-1.92	-0.53	3.11	15.8	4.5	64.8	0.1	1.0	10.6	15.0	2.45×10^{-7}	0.40	111
78	293	-2.30	1.73	2.72	2.8	9.1	55.3	1.5	8.6	29.5	11.7	2.44×10^{-7}	0.28	105
79	71	4.02	0.07	3.18	3.9	1.5	0.4	-22.4	18.6	4.4	6.1	2.43×10^{-7}	0.20	70
80	269	-1.95	-0.43	3.12	16.5	4.4	64.4	2.1	3.6	9.7	13.4	2.43×10^{-7}	0.40	45
81	42	-1.91	-0.56	-3.11	13.9	3.8	65.0	0.1	-4.1	9.8	13.5	2.41×10^{-7}	0.40	60
82	143	-3.15	1.50	2.93	179.0	0.8	118.5	-9.6	8.6	12.3	4.8	2.38×10^{-7}	0.29	97
83	364	2.29	1.71	2.74	175.2	9.7	124.4	0.0	9.3	28.5	11.4	2.38×10^{-7}	0.21	60
84	150	-3.07	1.49	2.97	178.4	0.8	117.7	-8.3	6.0	11.4	6.6	2.37×10^{-7}	0.29	91
85	100	2.94	0.65	3.17	10.5	0.5	6.9	-17.0	36.1	19.0	7.0	2.35×10^{-7}	0.28	69
86	298	-1.92	-0.57	3.11	14.7	4.4	64.7	-1.6	3.0	9.9	14.6	2.32×10^{-7}	0.39	61
87	119	-0.14	0.96	2.97	166.6	11.3	118.8	7.8	-1.5	11.8	13.0	2.31×10^{-7}	0.17	46
88	228	-2.97	-1.48	3.11	174.0	3.2	117.7	-7.3	8.9	13.4	5.1	2.31×10^{-7}	0.28	50
89	204	1.95	-0.56	3.11	162.4	5.6	115.4	-1.9	3.5	10.0	14.6	2.30×10^{-7}	0.31	65
90	13	-0.29	-0.96	2.94	172.0	7.9	119.3	12.2	0.1	13.1	10.1	2.30×10^{-7}	0.18	114
91	329	2.66	-0.63	3.40	9.5	4.5	6.1	-17.8	34.9	19.6	8.1	2.30×10^{-7}	0.28	46
92	10	-2.95	-1.50	3.13	173.0	3.6	118.1	-6.9	8.8	14.4	7.7	2.30×10^{-7}	0.28	40
93	179	1.97	-0.48	3.13	162.6	5.2	115.7	-2.9	3.3	11.8	12.7	2.29×10^{-7}	0.31	68
94	15	2.73	-0.65	3.39	9.5	3.3	4.6	-22.8	35.6	17.1	7.8	2.29×10^{-7}	0.28	91
95	374	-0.28	-0.97	2.95	173.3	7.5	118.3	4.8	-2.5	10.2	10.5	2.27×10^{-7}	0.18	46
96	221	-2.95	-1.50	3.13	173.2	3.4	118.4	-9.5	9.2	12.5	7.4	2.27×10^{-7}	0.28	58
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curv	ature	tw	ist	rate	ΔF	stens
Tallk	iu	Х	у	Z	Х	у	Z	A	В	Α	В	Tate		steps
97	142	-3.01	0.63	3.00	12.7	6.7	8.1	-15.0	26.4	22.0	1.3	2.27×10^{-7}	0.53	68
98	57	-3.12	1.48	2.99	177.0	2.4	118.5	-9.0	10.6	11.8	9.3	2.25×10^{-7}	0.26	77
99	21	-1.53	1.65	3.01	162.8	9.9	114.7	-6.0	12.7	11.2	1.6	2.25×10^{-7}	0.30	58
100	67	2.72	-0.56	3.40	3.9	3.6	5.6	-19.9	32.9	16.6	2.6	2.22×10^{-7}	0.27	68
101	473	1.60	1.64	3.01	20.3	10.9	66.3	-10.4	4.7	5.0	5.2	2.21×10^{-7}	0.27	45
102	265	-1.52	1.62	3.04	162.7	9.9	114.8	-5.9	13.8	12.1	2.7	2.14×10^{-7}	0.28	76
103	367	-2.92	0.57	3.22	174.5	0.2	173.8	-16.5	34.5	19.1	1.9	2.13×10^{-7}	0.28	37
104	275	-4.15	-0.01	3.07	0.6	5.3	0.0	-25.5	18.9	0.6	1.7	2.13×10^{-7}	0.49	59
105	168	-2.92	0.54	3.24	175.8	0.0	174.6	-18.0	33.9	17.7	2.8	2.12×10^{-7}	0.28	43
106	416	-4.13	0.04	-3.07	0.3	4.7	0.3	25.2	-16.7	0.6	2.5	2.06×10^{-7}	0.48	82
107	365	4.15	0.04	3.06	179.2	5.7	179.5	-25.9	16.8	0.6	0.3	2.06×10^{-7}	0.41	68
108	313	-1.89	4.03	2.75	0.2	7.1	0.1	-14.5	3.0	13.6	1.3	2.05×10^{-7}	0.43	68
109	326	1.93	4.05	2.67	178.7	6.7	178.9	-13.4	2.1	15.0	2.1	2.04×10^{-7}	0.40	99
110	237	1.75	-4.06	2.79	178.9	3.5	179.3	-16.3	2.0	16.5	0.5	2.02×10^{-7}	0.41	54
111	8	-0.06	1.01	3.04	163.9	13.4	117.2	1.5	1.3	11.8	12.8	2.01×10^{-7}	0.13	82
112	188	-4.15	0.04	3.07	0.6	5.5	0.1	-26.0	18.6	0.8	1.8	1.99×10^{-7}	0.47	72
113	270	4.15	0.04	3.03	178.7	5.6	179.5	-24.0	18.4	4.1	2.7	1.98×10^{-7}	0.40	89
114	474	-4.14	0.03	-3.09	0.4	4.8	0.5	24.3	-18.5	1.3	1.2	1.98×10^{-7}	0.47	104
115	345	-1.87	4.04	2.74	0.1	6.7	0.3	-14.0	2.6	13.2	0.7	1.96×10^{-7}	0.32	59
116	232	1.63	4.12	2.83	1.6	0.5	2.3	-4.8	16.4	7.5	8.7	1.95×10^{-7}	0.29	108
117	323	-1.60	4.05	2.91	179.5	3.3	177.9	-4.1	14.1	6.5	9.8	1.95×10^{-7}	0.20	63
118	38	-4.14	-0.01	3.08	0.1	5.5	0.3	-24.7	18.5	0.8	2.8	1.95×10^{-7}	0.46	55
119	213	-1.58	4.10	2.79	179.6	1.3	175.6	0.6	11.4	11.8	10.3	1.91×10^{-7}	0.20	72
120	492	-1.56	4.19	2.70	176.7	0.5	175.6	-2.0	12.3	10.2	6.4	1.91×10^{-7}	0.29	121
121	241	1.56	4.15	-2.78	2.6	0.8	3.6	2.5	-16.1	7.9	8.3	1.90×10^{-7}	0.29	73
122	305	-1.59	4.17	2.73	177.9	0.7	175.8	-0.2	13.4	11.0	8.9	1.89×10^{-7}	0.28	86
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation	_	curva	ature	tw	ist	rate	ΔE	stens
Talik	iu	Х	у	Z	Х	У	Z	A	В	Α	В	Tate		steps
123	488	-1.54	4.17	2.78	177.7	1.2	176.4	-1.6	16.2	7.3	10.5	1.86×10^{-7}	0.28	95
124	400	-1.67	4.07	2.89	179.2	1.4	177.4	-4.1	14.0	11.1	10.2	1.83×10^{-7}	0.18	63
125	486	1.56	4.16	2.76	2.9	0.2	4.6	-1.4	15.4	10.0	7.5	1.83×10^{-7}	0.28	40
126	417	-2.53	0.94	3.11	166.8	9.6	116.9	-0.7	19.2	0.6	10.8	1.83×10^{-7}	0.27	70
127	363	3.10	-1.55	2.98	177.3	1.1	119.0	-11.9	5.8	14.7	6.9	1.82×10^{-7}	0.46	82
128	272	-2.55	-0.99	3.08	167.6	9.3	118.4	-3.0	16.9	2.3	11.4	1.82×10^{-7}	0.28	83
129	432	1.58	4.12	2.80	2.1	3.0	3.0	-1.5	15.6	8.8	9.4	1.81×10^{-7}	0.17	78
130	107	-3.25	1.55	2.82	1.7	3.0	60.8	-12.0	6.8	14.4	6.3	1.68×10^{-7}	0.49	64
131	338	2.58	1.01	3.12	13.7	11.5	62.7	-4.9	15.6	0.3	12.9	1.62×10^{-7}	0.14	56
132	287	-2.47	-0.91	3.20	162.8	11.1	118.9	-4.2	13.3	0.6	13.1	1.60×10^{-7}	0.24	47
133	390	-2.69	1.08	2.92	8.3	6.0	60.1	0.3	4.7	5.9	10.1	1.58×10^{-7}	0.32	58
134	456	-2.70	1.13	2.91	9.2	6.8	59.2	-1.5	3.8	4.7	12.0	1.57×10^{-7}	0.32	65
135	262	1.75	1.80	3.02	3.9	2.3	64.1	-7.4	18.0	2.2	6.1	1.55×10^{-7}	0.15	50
136	33	-2.49	0.94	3.22	161.0	13.6	117.7	-6.1	13.8	0.4	12.7	1.55×10^{-7}	0.17	25
137	258	-2.47	0.94	3.21	160.8	13.8	118.1	-5.6	12.6	4.1	12.0	1.53×10^{-7}	0.17	54
138	436	-2.61	-1.13	3.02	13.6	9.1	59.3	-1.7	5.2	5.1	13.2	1.53×10^{-7}	0.31	55
139	229	-2.59	-1.11	3.08	15.4	9.5	58.2	-7.0	0.2	4.3	10.0	1.51×10^{-7}	0.31	88
140	246	-0.87	2.58	2.67	170.0	8.1	127.0	15.0	-1.6	22.4	6.2	1.51×10^{-7}	0.13	46
141	89	-0.62	-2.49	2.82	175.5	2.5	127.7	16.7	0.4	22.3	6.0	1.49×10^{-7}	0.13	41
142	392	2.61	-1.03	3.16	157.3	11.7	122.0	-8.8	-1.4	0.3	2.1	1.48×10^{-7}	0.18	71
143	477	-3.87	2.18	3.38	178.7	2.6	111.1	-13.2	16.3	1.0	5.5	1.43×10^{-7}	0.34	50
144	358	-0.60	2.92	2.71	165.8	1.1	114.2	3.2	17.7	6.2	4.9	1.43×10^{-7}	0.19	65
145	340	2.62	-1.12	3.21	157.2	10.1	125.0	-15.0	-7.1	1.0	3.2	1.41×10^{-7}	0.17	78
146	122	-0.66	2.97	2.66	152.8	2.9	114.7	6.3	17.8	1.0	6.5	1.40×10^{-7}	0.14	43
147	431	-1.97	-5.03	2.16	167.9	9.5	119.2	8.1	1.3	11.9	15.8	1.40×10^{-7}	0.15	43
148	421	0.66	-2.72	-2.73	2.3	3.8	53.8	-9.5	-1.7	17.9	5.0	1.40×10^{-7}	0.19	150
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curva	ature	tw	ist	rate	ΔF	stens
Talik	iu	Х	у	Z	Х	У	Z	А	В	Α	В	Tate	ΔD	sicps
149	105	-0.86	2.60	2.68	169.7	8.0	126.9	15.2	-2.1	20.5	7.4	1.40×10^{-7}	0.11	61
150	347	-2.59	0.93	3.15	19.4	10.8	58.7	-7.2	1.6	4.3	4.1	1.39×10^{-7}	0.22	90
151	140	3.99	-2.18	3.35	5.4	3.8	67.0	-16.3	18.4	0.3	10.5	1.39×10^{-7}	0.25	69
152	92	3.92	-2.27	3.29	1.3	1.8	67.9	-14.2	14.0	2.8	5.5	1.39×10^{-7}	0.25	101
153	350	-3.90	2.10	3.42	170.8	6.5	111.6	-13.8	14.4	1.4	11.6	1.39×10^{-7}	0.30	55
154	261	0.23	6.54	1.69	8.4	0.4	86.6	-8.5	-4.2	0.5	0.3	1.38×10^{-7}	0.23	58
155	201	-0.97	2.48	2.78	9.1	12.0	53.7	5.7	11.4	24.5	1.3	1.37×10^{-7}	0.35	174
156	413	-2.57	1.06	3.16	19.9	11.3	57.2	-7.7	-2.9	0.7	4.3	1.36×10^{-7}	0.22	67
157	247	0.31	6.52	1.74	18.2	2.7	85.6	-10.5	-4.4	1.2	3.8	1.36×10^{-7}	0.22	99
158	165	0.31	-6.51	1.78	50.4	3.6	85.3	-9.6	-4.0	1.9	6.3	1.35×10^{-7}	0.24	92
159	108	-0.30	6.47	1.74	150.1	1.5	95.5	-8.1	-3.9	3.1	0.7	1.34×10^{-7}	0.22	40
160	50	-2.08	5.06	2.05	169.2	10.0	119.4	6.9	2.4	8.8	13.0	1.33×10^{-7}	0.12	100
161	48	2.15	5.07	2.00	13.6	11.7	60.3	7.7	0.7	12.3	15.6	1.33×10^{-7}	0.10	125
162	380	-1.96	-5.05	2.14	167.0	9.9	118.8	7.5	1.7	11.2	16.8	1.32×10^{-7}	0.14	59
163	243	1.32	5.74	2.05	2.3	12.1	36.7	-9.7	2.1	9.1	2.2	1.32×10^{-7}	0.20	98
164	315	1.45	5.72	2.04	1.4	11.5	34.2	-8.3	2.4	8.9	0.3	1.31×10^{-7}	0.20	119
165	483	1.03	5.73	2.23	4.4	11.6	41.3	-10.9	0.9	8.2	2.3	1.31×10^{-7}	0.20	70
166	20	2.08	5.05	2.02	14.8	13.9	61.7	7.3	0.6	11.1	15.0	1.31×10^{-7}	0.11	53
167	457	1.43	5.66	-2.03	176.9	15.0	144.9	15.1	3.1	8.1	4.9	1.30×10^{-7}	0.48	96
168	216	2.07	5.06	1.99	14.6	13.8	62.1	7.4	1.0	11.5	14.2	1.30×10^{-7}	0.11	99
169	166	1.50	5.61	2.16	4.1	12.5	33.8	-9.8	0.2	6.8	0.9	1.29×10^{-7}	0.15	79
170	319	1.51	5.65	2.00	2.1	13.4	33.7	-7.2	-0.7	9.7	3.1	1.29×10^{-7}	0.15	53
171	322	1.59	5.63	1.92	178.7	15.1	147.6	-12.7	-1.1	10.8	6.1	1.29×10^{-7}	0.48	120
172	372	1.40	5.74	1.89	1.1	10.9	34.6	-5.9	1.7	10.0	2.5	1.28×10^{-7}	0.20	96
173	63	2.19	5.05	1.99	11.5	11.5	59.4	5.7	1.2	11.3	10.0	1.26×10^{-7}	0.08	72
174	103	-0.66	3.01	2.65	153.1	2.2	114.5	6.4	17.5	2.6	7.2	1.26×10^{-7}	0.11	48
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation	_		rotation		curv	ature	tw	ist	rate	ΔE	stens
Tallk	iu	Х	у	Z	Х	у	Z	A	В	Α	В	Tate		steps
175	75	2.14	5.07	2.04	12.2	10.8	60.2	7.7	1.9	10.8	14.3	1.25×10^{-7}	0.08	48
176	159	-1.97	-0.59	3.49	25.9	7.7	23.5	1.4	-6.8	11.5	8.1	1.25×10^{-7}	0.27	62
177	453	1.82	-0.53	3.40	5.5	2.8	11.5	-23.3	25.8	5.2	21.1	1.23×10^{-7}	0.29	179
178	273	1.47	5.62	-2.03	176.5	15.8	145.6	14.9	1.3	11.2	5.2	1.22×10^{-7}	0.46	85
179	341	1.58	5.66	1.86	179.1	15.4	147.7	-12.6	-1.7	11.2	9.3	1.22×10^{-7}	0.46	103
180	420	2.20	5.08	2.04	14.1	12.0	59.9	4.6	2.5	12.1	13.8	1.21×10^{-7}	0.07	81
181	18	0.96	5.11	2.13	179.5	2.6	112.5	13.0	4.2	8.2	10.3	1.21×10^{-7}	0.08	79
182	176	1.54	5.57	-2.04	176.6	16.8	146.1	11.8	2.8	11.2	6.1	1.21×10^{-7}	0.37	69
183	126	0.88	5.05	2.27	176.1	3.8	112.9	12.1	4.6	3.1	10.8	1.20×10^{-7}	0.08	72
184	148	1.43	-5.66	2.06	179.5	12.3	146.8	-13.1	-0.9	9.9	8.5	1.20×10^{-7}	0.47	105
185	210	1.52	5.69	-1.92	178.0	16.1	146.2	11.1	0.5	10.4	5.4	1.20×10^{-7}	0.37	62
186	113	-2.04	0.63	3.36	28.1	8.9	24.0	5.7	-11.8	9.7	8.3	1.20×10^{-7}	0.29	69
187	387	-2.21	0.59	3.37	26.7	10.6	22.9	3.8	-4.1	14.5	7.1	1.20×10^{-7}	0.25	63
188	102	5.34	0.86	3.11	5.4	1.7	5.2	-25.0	16.3	6.8	16.6	1.19×10^{-7}	0.24	90
189	357	0.93	5.07	2.20	179.5	3.4	113.1	11.2	4.6	6.4	9.6	1.19×10^{-7}	0.11	81
190	123	0.92	5.07	-2.20	179.3	3.3	113.1	-11.1	-4.4	6.1	9.4	1.19×10^{-7}	0.11	74
191	69	0.92	5.06	2.18	177.1	2.6	113.3	11.0	4.0	6.1	8.2	1.19×10^{-7}	0.11	94
192	172	0.92	5.06	2.21	178.9	3.2	113.1	10.9	4.6	5.8	9.5	1.18×10^{-7}	0.10	56
193	156	0.93	5.07	2.20	180.0	3.6	112.9	10.5	4.2	5.7	9.9	1.17×10^{-7}	0.10	82
194	35	-0.82	5.04	2.22	6.5	5.2	67.6	12.5	1.3	1.2	11.5	1.17×10^{-7}	0.12	117
195	128	5.34	0.83	3.13	5.2	1.3	5.9	-25.8	17.6	6.8	13.5	1.17×10^{-7}	0.23	98
196	440	0.91	5.06	2.20	175.6	1.1	113.5	11.1	5.6	7.4	8.2	1.17×10^{-7}	0.07	98
197	73	-0.88	5.07	2.20	0.5	4.0	67.0	11.9	4.2	3.9	10.1	1.16×10^{-7}	0.15	126
198	132	-0.89	5.08	2.19	0.1	3.9	67.0	11.9	4.3	4.1	10.0	1.16×10^{-7}	0.15	80
199	257	1.14	4.46	2.73	173.2	7.9	170.3	-10.8	24.2	13.4	6.5	1.16×10^{-7}	0.30	74
200	16	0.97	5.08	2.20	177.5	3.5	112.4	11.3	4.1	5.6	11.8	1.16×10^{-7}	0.07	58
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curv	ature	tw	ist	rate	ΔF	stens
Tallk	iu	Х	у	Z	х	У	Z	А	В	Α	В	Tate	ΔD	steps
201	11	1.39	5.68	1.96	177.8	15.1	144.4	-13.7	-1.2	10.4	8.2	1.16×10^{-7}	0.45	100
202	470	-0.85	5.04	2.30	0.8	2.7	66.5	11.3	5.1	4.8	10.5	1.16×10^{-7}	0.12	82
203	2	0.68	3.43	-2.43	8.6	1.7	55.3	-17.5	-12.9	5.0	5.7	1.15×10^{-7}	0.09	48
204	385	2.08	0.90	3.24	179.7	4.5	168.7	-29.6	18.3	8.5	23.0	1.15×10^{-7}	0.32	113
205	91	1.57	5.72	1.75	178.4	15.1	148.1	-9.5	1.3	12.0	5.9	1.14×10^{-7}	0.35	98
206	342	1.55	5.58	-2.09	175.6	17.1	146.5	13.6	-1.7	10.0	6.0	1.14×10^{-7}	0.35	92
207	487	-2.99	-1.73	3.04	15.0	2.5	61.7	-15.0	9.4	7.9	3.7	1.14×10^{-7}	0.38	60
208	77	1.55	5.70	1.80	179.9	16.7	147.1	-8.6	-0.6	10.7	8.7	1.14×10^{-7}	0.35	62
209	373	2.76	-0.77	3.02	176.0	0.4	121.2	-4.6	15.7	11.6	17.1	1.14×10^{-7}	0.18	69
210	344	-0.82	5.04	2.26	0.2	2.6	66.1	12.9	6.4	3.2	8.9	1.13×10^{-7}	0.11	72
211	203	-1.52	5.66	-1.91	1.6	17.1	33.4	12.7	3.3	9.7	7.7	1.13×10^{-7}	0.36	158
212	253	1.07	4.37	2.88	175.2	10.9	172.3	-12.0	27.7	10.5	8.8	1.13×10^{-7}	0.22	112
213	429	1.64	5.72	1.78	179.8	15.6	148.6	-10.3	0.3	13.5	4.0	1.13×10^{-7}	0.35	91
214	427	0.83	-5.07	2.20	176.5	2.6	113.9	11.1	3.3	10.4	4.8	1.13×10^{-7}	0.11	42
215	174	-1.04	4.38	-2.90	3.8	13.0	5.5	9.6	-26.2	12.6	12.0	1.12×10^{-7}	0.25	63
216	297	-0.98	4.43	2.86	4.4	12.2	4.8	-9.3	26.1	11.3	10.9	1.12×10^{-7}	0.25	67
217	244	-1.06	4.44	2.84	4.9	10.1	5.7	-11.8	24.8	13.8	12.0	1.12×10^{-7}	0.32	123
218	454	2.12	0.86	3.29	179.9	5.4	168.8	-34.9	21.6	7.2	22.8	1.12×10^{-7}	0.32	80
219	424	1.20	4.44	2.73	173.5	5.9	166.6	-13.4	24.2	9.2	8.2	1.12×10^{-7}	0.29	69
220	479	1.07	4.37	2.90	175.8	10.6	171.7	-12.5	27.2	9.8	9.9	1.11×10^{-7}	0.22	46
221	439	2.09	0.88	3.26	179.3	4.9	167.9	-33.1	17.3	8.3	24.0	1.11×10^{-7}	0.31	219
222	191	1.62	5.70	1.86	178.3	16.5	147.7	-10.8	0.6	13.3	4.1	1.11×10^{-7}	0.34	88
223	9	-1.41	-3.56	3.14	174.2	13.5	135.7	-20.6	24.3	15.8	8.5	1.11×10^{-7}	0.31	156
224	87	0.69	3.48	2.39	9.1	2.3	56.9	16.0	14.5	4.0	1.2	1.10×10^{-7}	0.12	47
225	353	-1.53	5.66	2.04	3.1	15.6	33.5	-14.1	0.2	7.7	3.7	1.10×10^{-7}	0.35	74
226	162	-1.04	4.37	2.92	3.1	12.5	6.2	-12.1	25.2	12.5	12.8	1.10×10^{-7}	0.24	53
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curv	ature	tw	ist	rate	ΔF	stens
Tallk	iu	Х	у	Z	Х	у	Z	A	В	Α	В	Tate		steps
227	59	1.62	5.69	1.85	179.3	16.1	148.0	-11.6	2.0	13.2	5.6	1.09×10^{-7}	0.34	100
228	455	-1.10	4.43	2.84	4.7	9.8	6.9	-10.0	25.3	13.4	10.6	1.09×10^{-7}	0.31	140
229	26	0.56	3.55	2.36	15.8	0.6	53.7	22.6	15.6	1.6	4.0	1.09×10^{-7}	0.12	56
230	239	-1.01	4.39	-2.86	5.8	11.4	6.9	12.1	-28.0	9.7	10.7	1.07×10^{-7}	0.23	79
231	289	-1.98	-0.78	3.36	0.3	8.9	11.7	-30.1	19.8	6.8	25.9	1.07×10^{-7}	0.35	80
232	444	-0.60	3.50	2.41	166.3	0.8	125.1	19.6	16.3	1.1	4.7	1.04×10^{-7}	0.05	30
233	93	-1.28	-3.87	3.13	176.8	6.5	148.6	-26.6	30.1	12.2	0.8	1.04×10^{-7}	0.35	111
234	99	-1.26	3.62	3.10	173.2	15.5	132.1	-16.6	23.9	16.2	6.9	1.03×10^{-7}	0.32	300
235	62	-1.96	-0.74	3.37	0.8	8.3	11.4	-28.9	21.7	5.8	24.9	1.02×10^{-7}	0.34	55
236	496	-0.54	3.57	2.38	164.7	1.3	125.1	20.0	14.8	3.3	6.4	1.02×10^{-7}	0.04	92
237	468	-0.58	-3.57	2.34	163.8	0.1	125.2	21.2	13.6	3.6	5.7	1.01×10^{-7}	0.09	84
238	320	-1.55	-4.95	2.86	12.1	6.7	44.4	4.2	0.4	6.6	4.9	1.01×10^{-7}	0.25	95
239	278	1.64	5.06	2.64	175.1	5.3	133.9	-0.2	3.2	5.5	6.3	1.00×10^{-7}	0.22	135
240	310	1.65	5.19	2.33	179.8	3.9	135.0	3.2	-2.9	3.4	5.9	9.93×10^{-8}	0.22	58
241	472	-1.65	5.16	2.52	1.2	1.3	44.0	-1.1	2.9	4.6	6.4	9.91×10^{-8}	0.27	78
242	27	-1.74	5.16	-2.48	0.0	2.9	46.2	1.7	-1.8	1.0	7.1	9.91×10^{-8}	0.27	72
243	200	-1.59	5.17	-2.41	1.1	4.9	44.3	-2.7	-1.3	1.2	4.6	9.89×10^{-8}	0.22	74
244	202	-1.47	5.01	2.81	12.0	8.4	44.5	3.4	-0.8	6.0	3.1	9.87×10^{-8}	0.22	49
245	195	2.05	-5.08	1.98	175.7	10.2	119.8	5.4	5.2	11.7	6.8	9.86×10^{-8}	0.44	121
246	157	1.57	5.06	-2.71	178.3	2.5	136.8	4.2	-6.4	0.7	3.5	9.84×10^{-8}	0.17	126
247	423	-1.53	3.50	2.94	10.1	11.7	53.7	-9.4	8.6	9.1	1.0	9.83×10^{-8}	0.26	71
248	65	-1.53	5.13	2.55	3.9	5.8	43.9	4.6	-0.5	0.2	5.0	9.75×10^{-8}	0.21	65
249	336	-1.64	5.15	2.46	2.3	5.5	45.1	1.3	-1.9	2.1	4.8	9.72×10^{-8}	0.21	91
250	330	-0.63	4.65	2.63	168.0	2.8	175.9	-13.7	26.8	3.2	9.9	9.71×10^{-8}	0.27	116
251	41	-4.56	-1.01	3.24	25.8	16.0	63.7	-2.6	-3.9	13.6	1.6	9.60×10^{-8}	0.38	57
252	56	-0.90	5.63	2.13	175.6	7.8	119.8	-4.3	4.6	0.4	11.2	9.59×10^{-8}	0.16	77
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curv	ature	tw	ist	rate	ΔF	stens
Talik	iu	Х	у	Z	Х	У	Z	А	В	Α	В	Tate	ΔD	steps
253	130	-4.16	-0.67	3.18	163.8	8.7	119.5	-11.3	-3.4	3.6	7.5	9.55×10^{-8}	0.27	73
254	494	-0.71	4.58	2.69	172.2	6.7	177.1	-8.6	20.2	3.3	10.4	9.54×10^{-8}	0.26	107
255	7	-1.76	3.42	2.83	2.7	3.6	53.1	0.6	-1.8	3.8	6.8	9.51×10^{-8}	0.24	63
256	274	1.75	5.24	2.35	173.1	1.7	136.0	-8.5	4.8	8.4	7.9	9.48×10^{-8}	0.21	139
257	186	-4.74	1.00	2.99	21.3	13.0	62.5	-1.3	-3.6	12.7	0.5	9.46×10^{-8}	0.27	84
258	406	0.73	4.58	2.69	12.2	1.0	5.3	-15.2	27.6	0.3	9.4	9.45×10^{-8}	0.34	73
259	379	-0.65	-4.60	2.65	168.7	2.8	177.5	-10.1	22.5	2.0	12.8	9.45×10^{-8}	0.35	99
260	493	1.62	5.20	2.37	177.6	2.5	136.9	-1.5	0.6	6.8	4.6	9.45×10^{-8}	0.16	140
261	17	-3.70	2.20	3.33	19.9	8.3	51.7	-15.5	-5.7	8.3	14.6	9.43×10^{-8}	0.36	102
262	378	0.76	3.52	2.36	164.7	2.9	125.5	16.3	18.1	9.2	5.3	9.37×10^{-8}	0.21	86
263	109	-4.16	-0.67	3.17	164.4	8.4	118.2	-11.8	-3.9	6.1	10.4	9.33×10^{-8}	0.26	39
264	215	-4.14	-0.71	3.19	162.6	9.0	119.0	-11.2	-3.2	2.9	9.2	9.32×10^{-8}	0.26	45
265	271	-1.74	3.33	2.97	6.3	3.1	52.8	-1.6	0.2	4.9	8.2	9.31×10^{-8}	0.17	52
266	40	-2.10	5.08	-1.86	12.8	13.8	61.3	-5.3	-4.6	13.4	13.1	9.31×10^{-8}	0.37	85
267	24	-1.61	5.17	-2.41	0.9	5.2	44.5	-3.5	1.3	2.5	6.8	9.27×10^{-8}	0.20	62
268	74	-0.67	4.62	-2.69	171.7	5.5	177.7	9.4	-20.5	2.1	9.9	9.26×10^{-8}	0.25	60
269	434	-4.54	-0.98	3.27	154.9	16.5	116.5	1.0	-2.0	13.5	4.1	9.26×10^{-8}	0.25	88
270	309	0.83	3.22	2.56	170.5	4.7	127.1	12.2	17.9	13.0	4.7	9.24×10^{-8}	0.21	94
271	321	-4.73	1.02	3.00	20.6	12.2	61.7	-1.9	-5.3	11.8	2.5	9.12×10^{-8}	0.26	49
272	397	2.08	5.10	1.80	166.4	16.2	117.4	5.2	2.6	13.9	13.1	9.11×10^{-8}	0.40	91
273	46	-3.65	2.14	3.38	22.7	10.2	52.7	-11.4	-5.5	11.4	12.0	9.11×10^{-8}	0.34	41
274	356	2.14	5.08	1.77	170.5	13.6	119.0	3.3	3.7	14.4	8.1	9.09×10^{-8}	0.34	69
275	411	-1.72	3.36	2.95	5.7	2.9	52.5	-0.5	1.2	4.1	8.8	9.08×10^{-8}	0.17	98
276	149	-1.73	3.34	2.96	6.0	3.0	52.9	-1.1	-0.2	4.4	8.8	9.08×10^{-8}	0.16	37
277	462	0.90	5.62	2.05	3.7	3.3	58.3	2.0	2.2	3.6	8.1	9.07×10^{-8}	0.13	79
278	235	-4.71	0.99	3.04	23.4	14.0	62.3	-1.7	-4.9	10.8	0.6	9.07×10^{-8}	0.25	46
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curv	ature	tw	ist	rate	ΔF	stens
Talik	iu	Х	У	Z	X	У	Z	A	В	Α	В	Tate		steps
279	263	-4.17	-0.66	3.17	165.1	8.2	118.7	-11.6	-3.7	4.1	9.5	9.05×10^{-8}	0.25	55
280	167	-0.53	4.61	2.66	170.7	3.8	177.4	-5.6	20.6	6.7	11.8	9.05×10^{-8}	0.32	92
281	129	-2.09	5.08	1.83	14.9	15.1	61.9	5.8	2.7	15.0	13.9	9.03×10^{-8}	0.36	60
282	120	-4.59	-0.99	3.24	26.2	15.9	62.2	-3.2	-4.9	9.1	1.8	9.03×10^{-8}	0.36	41
283	45	-2.06	5.11	1.79	11.9	15.4	62.5	5.8	3.0	13.2	12.6	9.01×10^{-8}	0.41	48
284	158	-4.52	-0.99	3.29	154.3	17.1	115.9	-0.2	0.5	12.4	6.4	8.99×10^{-8}	0.24	38
285	438	-1.62	5.19	-2.39	1.4	3.6	44.0	-1.5	0.2	4.2	6.2	8.98×10^{-8}	0.19	69
286	308	-1.74	-3.43	2.81	5.5	5.6	55.5	3.2	-3.9	6.8	4.2	8.91×10^{-8}	0.23	93
287	219	-0.84	5.67	2.04	176.5	6.6	119.5	-3.8	1.4	0.4	11.0	8.91×10^{-8}	0.12	53
288	442	-4.57	-1.01	3.25	25.8	15.9	62.1	-1.7	-3.4	10.5	1.4	8.86×10^{-8}	0.26	68
289	112	-4.55	-1.03	3.29	155.3	16.9	116.8	-1.7	1.2	11.4	6.3	8.85×10^{-8}	0.24	70
290	199	-0.94	5.67	1.94	177.9	8.0	121.1	-1.0	-0.2	2.0	10.1	8.84×10^{-8}	0.14	74
291	491	3.70	2.17	3.34	160.8	5.8	129.1	-15.3	-2.5	8.5	12.6	8.82×10^{-8}	0.20	95
292	212	5.30	-0.93	3.14	179.5	3.4	175.5	-26.5	14.8	11.6	13.6	8.79×10^{-8}	0.57	61
293	296	-4.49	-0.98	3.33	151.1	19.9	114.9	1.2	-1.4	11.0	9.5	8.77×10^{-8}	0.16	71
294	415	0.90	5.67	1.99	4.2	4.8	58.5	-2.3	2.0	2.6	9.3	8.76×10^{-8}	0.14	69
295	145	-3.76	-2.17	3.25	20.2	6.0	49.8	-9.9	-3.1	10.3	12.7	8.74×10^{-8}	0.27	64
296	259	0.87	5.63	2.06	4.0	8.5	61.1	-6.6	2.4	0.2	10.6	8.70×10^{-8}	0.14	84
297	399	3.72	2.21	3.32	162.3	7.0	128.5	-16.9	-4.4	8.7	11.8	8.69×10^{-8}	0.26	94
298	173	-0.94	5.62	2.06	174.3	3.6	121.8	-4.8	0.8	2.4	4.8	8.66×10^{-8}	0.13	54
299	251	-0.70	3.70	-2.22	18.9	2.1	56.0	-14.9	-15.5	2.4	6.4	8.64×10^{-8}	0.21	110
300	482	-0.87	5.66	1.96	177.1	5.7	120.0	-3.6	-1.5	0.7	6.5	8.62×10^{-8}	0.13	46
301	70	-4.65	1.02	3.11	158.2	15.7	117.3	0.3	-0.4	9.7	8.2	8.53×10^{-8}	0.14	74
302	175	3.75	2.20	3.32	162.6	6.6	128.2	-17.8	-3.8	7.9	12.3	8.52×10^{-8}	0.25	106
303	220	-4.14	-0.56	3.09	14.4	7.2	61.4	-12.8	-8.3	4.7	2.1	8.49×10^{-8}	0.52	57
304	255	-4.51	-1.06	3.36	152.8	19.9	116.4	-0.4	0.2	11.7	9.8	8.48×10^{-8}	0.15	54
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curv	ature	tw	ist	rate	ΔF	stens
Talik	iu	Х	у	Z	Х	У	Z	A	В	Α	В	Tate	ΔD	steps
305	448	-4.54	-1.09	3.31	154.5	18.6	117.1	-0.6	-0.9	12.0	6.9	8.41×10^{-8}	0.15	67
306	60	0.97	5.69	1.82	1.1	6.6	59.3	-3.6	0.2	2.8	7.5	8.32×10^{-8}	0.11	172
307	396	-1.20	5.25	-2.42	179.0	6.9	141.0	1.4	0.9	4.6	6.0	8.23×10^{-8}	0.53	76
308	36	-3.99	0.75	3.23	27.0	12.0	62.4	-16.7	-14.6	4.8	1.2	8.21×10^{-8}	0.42	52
309	51	-5.31	-0.86	3.14	0.4	3.4	4.2	-24.5	15.3	11.0	12.2	8.09×10^{-8}	0.61	48
310	121	-1.21	5.21	2.57	172.8	10.3	138.9	-1.5	-1.0	7.7	6.5	7.94×10^{-8}	0.52	58
311	337	-3.54	2.47	3.50	159.1	13.9	133.6	-12.9	8.6	11.6	5.1	7.79×10^{-8}	0.28	81
312	461	0.76	3.49	2.43	162.8	3.1	125.5	13.3	17.9	6.9	6.1	7.65×10^{-8}	0.15	67
313	332	0.70	3.50	2.42	161.0	1.8	126.8	16.8	19.4	5.0	6.0	7.62×10^{-8}	0.15	65
314	81	0.77	3.45	2.46	163.2	3.2	126.0	12.4	18.6	7.7	7.2	7.60×10^{-8}	0.15	66
315	428	-4.03	0.64	3.16	21.3	9.6	62.3	-13.9	-12.2	2.8	2.0	7.57×10^{-8}	0.49	54
316	72	-3.50	2.67	3.48	163.2	13.7	136.3	-10.3	14.8	12.2	2.7	7.53×10^{-8}	0.27	105
317	383	0.82	5.76	1.72	169.3	4.9	119.8	-8.8	2.4	0.5	7.5	7.10×10^{-8}	0.43	67
318	4	2.58	3.80	2.19	6.4	3.5	63.7	17.0	8.5	11.3	0.5	6.94×10^{-8}	0.10	34
319	260	-0.87	5.74	1.81	12.4	4.0	59.2	-10.9	2.5	0.3	6.3	6.91×10^{-8}	0.42	76
320	426	1.82	-0.17	3.48	159.4	7.9	169.7	-13.3	19.6	16.1	11.0	6.91×10^{-8}	0.20	87
321	187	0.88	5.75	1.72	172.5	6.5	119.7	-8.1	2.4	2.4	6.4	6.88×10^{-8}	0.41	74
322	171	0.88	5.76	1.72	172.4	6.4	119.7	-8.1	2.2	2.4	6.3	6.84×10^{-8}	0.41	73
323	135	0.94	5.74	1.72	176.8	7.4	119.6	-6.0	2.9	5.0	7.2	6.81×10^{-8}	0.39	35
324	131	-0.83	5.78	1.63	13.5	4.2	60.1	-7.2	1.0	0.5	4.0	6.79×10^{-8}	0.42	34
325	409	-1.45	-1.25	3.39	173.9	8.2	178.9	-11.2	19.7	17.3	12.6	6.70×10^{-8}	0.25	57
326	211	-0.83	5.83	1.81	0.2	8.8	62.7	-9.4	7.8	4.4	11.2	6.63×10^{-8}	0.41	73
327	95	-1.67	1.35	3.24	174.6	3.6	178.5	-10.1	17.1	18.8	11.3	6.57×10^{-8}	0.25	51
328	25	-3.92	2.73	3.03	19.1	4.1	67.1	-16.1	9.4	3.8	1.9	6.38×10^{-8}	0.46	239
329	217	-1.42	0.23	3.41	157.0	0.8	165.9	5.2	13.2	14.8	22.4	6.34×10^{-8}	0.13	55
330	437	-1.33	0.29	3.44	155.4	1.7	164.0	6.7	9.1	13.1	21.7	5.83×10^{-8}	0.10	57
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curva	ature	tw	ist	rate	ΔE	stens
Talik	iu	Х	у	Z	Х	У	Z	A	В	Α	В	Tate		steps
331	133	-1.83	-5.00	2.70	165.4	15.1	127.0	-2.7	-1.6	9.4	7.9	5.75×10^{-8}	0.36	124
332	304	2.53	3.89	2.02	165.3	2.9	115.9	17.8	9.1	11.9	0.5	5.51×10^{-8}	0.29	61
333	80	1.86	1.92	2.84	168.0	7.8	177.9	3.2	8.2	25.5	14.1	5.35×10^{-8}	0.27	65
334	96	6.53	-1.11	2.91	179.1	0.3	117.9	-14.4	3.3	8.7	5.8	5.18×10^{-8}	0.58	110
335	68	-2.46	3.97	2.02	16.2	2.6	65.0	19.4	11.3	10.6	3.7	5.09×10^{-8}	0.31	42
336	499	-6.42	-1.51	3.01	176.7	2.3	115.3	-10.1	7.4	3.3	0.9	5.02×10^{-8}	0.38	67
337	464	-6.40	1.29	3.18	175.9	3.5	117.5	-10.6	6.8	7.1	1.1	4.99×10^{-8}	0.34	58
338	311	-6.38	1.51	3.14	174.6	3.5	115.5	-11.2	8.7	4.1	1.3	4.97×10^{-8}	0.37	72
339	101	-6.38	1.31	-3.27	175.0	4.5	116.3	10.4	-9.1	9.2	1.9	4.94×10^{-8}	0.37	152
340	226	-6.49	-1.35	2.96	7.3	2.0	61.4	-14.1	3.2	0.4	6.4	4.93×10^{-8}	0.61	40
341	152	-6.45	-1.40	3.01	178.6	2.2	115.9	-10.5	7.5	6.9	0.5	4.92×10^{-8}	0.34	50
342	466	-6.33	1.31	3.30	177.5	3.9	115.7	-12.4	7.7	10.7	0.7	4.89×10^{-8}	0.37	53
343	407	-6.51	-1.24	2.95	4.2	1.2	61.4	-13.3	2.3	4.3	7.7	4.87×10^{-8}	0.61	64
344	164	6.46	-1.30	2.98	4.3	0.6	64.3	-11.2	7.6	10.9	2.8	4.86×10^{-8}	0.30	66
345	190	-6.55	1.43	2.89	7.0	1.1	61.0	-15.6	3.2	0.9	6.3	4.85×10^{-8}	0.61	53
346	277	-6.51	-1.27	-2.98	176.8	1.0	116.2	13.0	-7.3	10.4	1.2	4.83×10^{-8}	0.33	71
347	198	-6.29	1.42	3.29	175.0	4.4	114.3	-9.9	8.8	9.1	1.0	4.80×10^{-8}	0.36	97
348	450	-6.41	1.34	3.12	4.9	3.0	62.3	-12.5	3.5	8.5	7.2	4.73×10^{-8}	0.70	155
349	443	-6.37	1.18	-3.23	5.1	3.8	63.3	13.9	-4.5	10.4	2.3	4.59×10^{-8}	0.60	67
350	264	5.34	2.49	2.80	172.6	3.1	117.1	-3.4	8.0	6.2	9.6	3.93×10^{-8}	0.21	218
351	382	5.32	2.67	2.62	176.4	2.9	118.1	1.1	6.0	11.6	11.0	3.91×10^{-8}	0.21	121
352	181	-5.39	2.56	2.70	3.8	3.6	64.0	-2.0	2.7	7.5	7.5	3.87×10^{-8}	0.31	152
353	294	5.28	2.22	3.09	165.2	4.8	116.2	-4.5	4.1	3.4	8.1	3.86×10^{-8}	0.21	157
354	497	-5.34	-2.08	3.09	15.8	3.3	62.9	-3.7	4.6	9.3	10.0	3.85×10^{-8}	0.28	60
355	0	7.68	0.14	-2.40	0.4	5.6	1.1	22.8	-2.6	7.8	8.8	3.84×10^{-8}	0.37	93
356	394	-5.23	2.10	3.27	17.8	5.0	63.2	-3.7	6.1	8.8	8.9	3.83×10^{-8}	0.27	46
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation	_		rotation		curv	ature	tw	ist	rate	ΔE	stens
Talik	iu	Х	у	Z	Х	У	Z	А	В	Α	В	Tate		steps
357	169	5.36	2.56	2.76	178.7	2.0	118.4	-3.7	5.5	6.1	9.0	3.80×10^{-8}	0.25	205
358	391	-7.65	-0.04	2.54	178.5	5.3	179.6	-22.7	2.9	0.1	3.6	3.80×10^{-8}	0.44	184
359	369	-7.66	-0.14	2.53	174.9	4.7	177.9	-22.4	2.8	1.1	11.0	3.80×10^{-8}	0.44	81
360	97	-7.65	0.03	2.54	177.2	5.1	179.7	-22.7	2.8	0.3	5.4	3.79×10^{-8}	0.44	236
361	306	-7.65	0.03	2.55	176.6	4.9	179.5	-22.6	2.7	0.7	6.5	3.79×10^{-8}	0.44	118
362	134	-5.25	-2.59	2.90	8.7	5.1	63.2	-1.2	5.5	9.4	8.8	3.78×10^{-8}	0.26	128
363	292	-5.26	-2.58	2.90	8.6	5.2	63.7	-1.3	6.4	9.2	8.2	3.76×10^{-8}	0.26	96
364	303	5.40	2.60	-2.62	178.8	2.9	115.9	2.0	-1.9	10.0	8.3	3.75×10^{-8}	0.24	300
365	79	-5.41	2.66	2.57	2.1	1.9	63.2	-1.2	3.0	10.8	8.4	3.73×10^{-8}	0.30	136
366	485	-5.37	2.44	2.84	3.5	1.0	62.6	-5.4	5.5	4.7	9.8	3.73×10^{-8}	0.26	68
367	419	-5.40	2.55	-2.71	4.2	2.2	63.5	6.3	-4.9	7.4	10.5	3.69×10^{-8}	0.25	171
368	267	-5.35	2.51	-2.76	0.9	0.5	62.6	4.6	-7.5	7.1	10.4	3.66×10^{-8}	0.25	114
369	227	-5.31	2.23	3.09	9.9	3.3	63.8	-5.5	3.3	4.5	7.3	3.66×10^{-8}	0.30	80
370	47	5.32	2.72	2.58	175.0	3.9	117.8	4.7	3.1	12.8	11.7	3.65×10^{-8}	0.19	123
371	465	7.64	0.10	2.58	5.1	7.1	2.6	-23.2	2.7	1.6	11.3	3.60×10^{-8}	0.35	195
372	66	-5.32	2.68	2.77	176.6	4.8	120.2	-3.7	13.2	8.7	2.8	3.54×10^{-8}	0.30	150
373	300	5.31	2.64	2.72	172.2	4.0	118.7	-0.7	3.6	8.9	12.6	3.53×10^{-8}	0.18	127
374	478	-5.32	2.64	-2.75	1.9	1.5	60.6	0.3	-8.6	8.1	8.8	3.52×10^{-8}	0.24	88
375	170	-5.39	2.64	2.66	0.2	0.6	61.6	-3.4	7.4	10.1	9.3	3.50×10^{-8}	0.24	82
376	335	5.32	2.66	2.77	3.3	5.1	60.7	-3.4	13.3	8.3	2.5	3.46×10^{-8}	0.23	118
377	290	-5.25	2.44	-3.06	168.8	7.6	116.8	1.9	-13.2	0.3	0.8	3.41×10^{-8}	0.29	203
378	115	5.30	2.55	2.88	6.3	6.1	62.6	-3.5	13.7	5.6	0.9	3.38×10^{-8}	0.23	117
379	182	-5.30	2.77	-2.74	179.0	5.1	120.7	-1.2	-13.1	9.0	0.6	3.31×10^{-8}	0.28	63
380	88	-6.64	3.92	-2.20	4.9	5.1	4.4	6.4	-2.4	9.4	3.6	3.30×10^{-8}	0.65	180
381	325	-5.26	2.52	2.97	169.8	8.0	116.1	-1.1	13.2	3.3	2.5	3.29×10^{-8}	0.28	55
382	254	6.60	3.66	2.59	178.9	3.5	174.0	-6.0	3.7	1.9	1.6	3.27×10^{-8}	0.62	98
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curva	ature	tw	ist	rate	ΔF	stens
Tallk	iu	Х	у	Z	Х	У	Z	Α	В	Α	В	Tate		steps
383	14	-5.25	2.76	2.77	175.8	6.3	119.7	1.7	11.5	8.2	3.6	3.24×10^{-8}	0.27	63
384	136	-6.65	3.30	2.98	2.7	0.4	10.2	-4.5	2.9	4.5	9.8	3.21×10^{-8}	0.64	55
385	231	-6.56	-3.79	2.57	174.4	2.7	171.8	-4.3	5.5	14.0	9.3	3.18×10^{-8}	0.35	82
386	127	-6.68	-3.28	2.90	4.7	2.0	8.9	-6.6	5.9	8.6	7.7	3.17×10^{-8}	0.65	95
387	30	-6.67	3.52	2.65	0.1	4.4	7.3	-7.6	3.3	0.8	1.7	3.17×10^{-8}	0.64	79
388	459	-6.47	4.07	2.31	174.1	2.2	178.3	-2.1	5.6	9.2	4.0	3.17×10^{-8}	0.36	85
389	280	-6.79	3.82	-1.89	169.8	5.1	171.0	6.7	-6.4	17.4	8.7	3.15×10^{-8}	0.36	121
390	408	6.62	3.87	-2.25	3.7	2.6	5.0	5.6	-3.9	10.9	5.4	3.10×10^{-8}	0.28	98
391	286	-6.66	3.94	2.06	171.1	4.1	174.5	-4.8	5.7	12.8	1.7	3.10×10^{-8}	0.35	88
392	189	6.57	3.99	2.22	5.6	3.5	3.4	-3.5	4.7	11.6	5.2	3.08×10^{-8}	0.31	84
393	285	-6.52	3.47	2.95	4.3	2.8	5.3	-5.2	0.7	5.5	0.2	3.06×10^{-8}	0.54	97
394	61	-6.63	-3.69	2.56	3.2	0.0	8.4	-7.4	1.9	12.4	8.0	3.03×10^{-8}	0.55	176
395	205	6.55	3.49	2.87	177.1	4.7	175.3	-9.4	-2.2	5.5	1.5	3.03×10^{-8}	0.51	98
396	331	-6.51	4.19	-2.06	175.1	3.0	179.2	4.2	-5.1	14.0	8.3	3.02×10^{-8}	0.31	52
397	307	-6.66	3.89	2.23	4.2	2.7	6.1	-8.0	2.5	9.5	6.5	3.02×10^{-8}	0.53	295
398	242	-6.56	-3.75	2.55	176.4	1.5	172.9	-4.0	0.8	13.6	8.2	2.98×10^{-8}	0.36	153
399	85	-6.62	4.00	-2.15	4.5	3.5	4.3	4.5	-2.7	11.9	6.4	2.96×10^{-8}	0.53	59
400	249	-6.46	4.16	2.29	177.0	3.9	179.7	-3.0	3.9	9.7	6.5	2.96×10^{-8}	0.34	79
401	185	-6.50	4.15	2.13	175.6	2.9	179.2	-3.2	3.8	12.2	7.7	2.96×10^{-8}	0.31	54
402	58	-6.56	4.01	2.15	174.9	4.5	177.2	-4.1	1.1	11.9	2.3	2.96×10^{-8}	0.31	37
403	98	-6.45	4.33	-2.10	175.7	5.1	178.1	1.8	-4.6	13.3	5.5	2.96×10^{-8}	0.34	135
404	28	-6.64	3.99	2.09	172.4	3.4	174.7	-2.2	5.6	13.3	4.6	2.95×10^{-8}	0.34	51
405	236	-7.65	0.50	2.48	2.2	6.8	3.5	-22.2	0.1	1.2	11.0	2.88×10^{-8}	0.84	82
406	318	-7.66	0.61	2.37	0.9	7.3	2.8	-22.3	-0.7	4.7	13.0	2.87×10^{-8}	0.84	79
407	354	5.26	2.68	2.83	6.3	1.7	61.0	-3.2	15.2	4.2	7.6	2.87×10^{-8}	0.27	106
408	352	5.25	-2.63	2.94	4.6	2.5	62.5	-4.3	15.3	3.1	6.4	2.80×10^{-8}	0.26	139
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curv	ature	tw	ist	rate	ΔF	stens
Tank	iu	Х	у	Z	Х	У	Z	А	В	Α	В	Tate		steps
409	218	-5.31	2.89	2.63	169.7	1.3	120.7	-0.5	13.9	9.1	9.7	2.77×10^{-8}	0.29	107
410	209	-6.23	5.26	-1.45	165.9	1.5	131.3	2.9	0.0	13.0	13.4	2.77×10^{-8}	0.37	215
411	139	-6.11	5.49	1.13	166.7	5.1	128.5	-3.1	0.2	18.3	12.7	2.73×10^{-8}	0.36	45
412	384	-5.27	2.88	2.69	170.9	1.9	120.6	-0.6	15.0	7.6	9.7	2.71×10^{-8}	0.28	76
413	78	-6.20	5.33	1.34	166.1	2.1	130.3	-2.6	-0.5	15.0	13.3	2.68×10^{-8}	0.36	90
414	452	-5.28	2.89	2.68	170.1	1.7	120.4	-0.5	14.1	8.5	9.6	2.65×10^{-8}	0.28	70
415	449	-6.30	1.72	2.60	174.7	3.3	175.9	2.0	13.4	22.7	16.9	2.62×10^{-8}	0.20	63
416	370	-6.08	-1.73	3.16	176.6	6.3	176.6	-0.5	12.1	21.5	19.2	2.52×10^{-8}	0.16	55
417	435	6.41	1.90	2.29	171.4	3.7	177.6	-6.0	8.6	25.6	19.5	2.35×10^{-8}	0.41	62
418	401	-6.39	-1.14	3.13	16.4	5.3	63.7	-3.9	13.6	7.8	11.0	2.32×10^{-8}	0.39	84
419	155	7.54	0.06	2.58	173.8	8.4	174.4	-18.5	-2.8	1.5	0.8	2.30×10^{-8}	0.71	75
420	12	6.37	1.80	-2.38	170.7	2.8	176.0	3.7	-10.2	24.8	17.8	2.29×10^{-8}	0.40	160
421	463	-6.31	1.78	2.48	7.9	1.4	4.2	-2.4	11.4	24.0	19.6	2.28×10^{-8}	0.45	80
422	184	-6.26	1.10	3.21	18.8	5.8	67.7	-1.4	12.7	1.8	12.7	2.27×10^{-8}	0.31	51
423	206	-3.87	5.67	1.90	2.9	3.1	58.8	0.8	-2.9	11.6	3.9	2.26×10^{-8}	0.23	98
424	37	-4.02	5.63	1.92	1.3	5.5	62.5	1.6	-0.8	9.9	3.6	2.25×10^{-8}	0.27	65
425	161	-6.24	1.00	-3.32	22.9	6.5	65.8	1.5	-9.7	7.2	12.3	2.24×10^{-8}	0.31	117
426	193	-3.65	5.65	2.04	2.6	3.8	55.8	2.5	-3.3	7.1	0.2	2.23×10^{-8}	0.22	82
427	279	-6.25	0.99	3.30	19.8	6.6	67.6	-3.7	11.7	7.2	11.6	2.23×10^{-8}	0.36	89
428	475	-7.39	-0.24	2.76	12.1	9.5	10.4	-15.7	-0.3	5.9	9.9	2.21×10^{-8}	0.76	111
429	291	-3.93	5.68	2.00	4.1	6.5	60.5	2.9	1.0	10.1	8.8	2.20×10^{-8}	0.26	86
430	248	-6.36	1.83	-2.37	10.1	3.5	3.7	4.3	-9.5	25.0	16.2	2.19×10^{-8}	0.44	40
431	368	-6.38	1.91	-2.35	8.8	2.9	2.8	2.9	-9.8	26.7	19.1	2.18×10^{-8}	0.44	141
432	414	-7.50	0.00	2.63	7.3	8.5	7.4	-16.8	-2.5	1.6	1.9	2.17×10^{-8}	0.74	72
433	348	-7.51	0.04	2.54	13.8	9.2	8.5	-16.9	-2.9	3.6	5.9	2.16×10^{-8}	0.73	45
434	49	-7.40	-0.15	2.69	14.6	10.6	10.8	-15.1	-1.6	2.3	9.3	2.16×10^{-8}	0.75	91
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curv	ature	tw	ist	rate	ΔF	stens
Tallk	iu	Х	у	Z	Х	У	Z	А	В	Α	В	Tate	ΔD	steps
435	223	-7.53	0.08	2.56	9.5	9.0	7.0	-17.4	-3.0	1.6	0.3	2.15×10^{-8}	0.73	105
436	334	-6.24	1.24	3.36	155.4	10.6	117.5	-1.9	13.0	5.1	6.6	2.14×10^{-8}	0.25	72
437	110	-3.77	5.44	2.54	4.8	5.2	59.1	1.9	-3.6	1.2	0.3	2.14×10^{-8}	0.25	83
438	460	-6.26	-1.53	3.28	157.9	12.1	119.3	-2.4	11.6	1.6	1.2	2.10×10^{-8}	0.26	85
439	327	6.39	1.85	-2.36	170.4	7.9	175.8	3.4	-9.8	24.9	19.1	2.06×10^{-8}	0.42	85
440	362	-7.45	-0.05	-2.66	8.9	8.7	8.9	16.2	3.1	1.5	1.1	2.05×10^{-8}	0.72	72
441	240	-3.76	5.64	2.15	0.1	3.4	57.6	2.4	-2.3	7.6	5.9	2.02×10^{-8}	0.19	44
442	23	-6.32	1.66	3.04	162.4	11.6	116.7	1.9	10.8	8.9	8.9	2.00×10^{-8}	0.31	127
443	405	-6.12	-1.92	-3.00	9.0	2.2	2.9	3.5	-7.6	25.7	19.2	1.98×10^{-8}	0.47	95
444	116	-4.24	4.25	-3.42	25.1	14.9	56.2	-2.1	-6.4	9.8	6.2	1.96×10^{-8}	0.34	300
445	208	-6.33	-4.90	1.67	32.2	2.3	35.8	-8.3	1.3	15.8	13.1	1.93×10^{-8}	0.63	285
446	467	-6.35	1.91	2.39	9.6	7.8	3.9	-2.0	7.1	23.6	20.3	1.93×10^{-8}	0.44	39
447	469	-6.35	1.98	2.32	10.5	8.8	3.4	-3.6	5.2	24.1	20.7	1.85×10^{-8}	0.43	81
448	389	-6.32	1.91	2.39	10.8	8.1	4.5	-2.2	6.3	24.0	20.4	1.77×10^{-8}	0.41	87
449	360	-6.50	4.56	1.80	27.4	2.9	33.0	-10.6	2.8	11.5	11.0	1.59×10^{-8}	0.56	300
450	106	-5.35	-3.92	3.09	149.6	9.1	106.4	1.1	10.8	11.4	9.0	1.58×10^{-8}	0.52	300
451	447	-7.83	1.86	2.67	33.4	11.9	64.6	3.4	4.8	11.0	9.0	4.47×10^{-9}	0.71	73
452	125	-7.73	-1.79	3.03	33.8	13.5	65.2	3.8	4.3	7.5	12.1	4.41×10^{-9}	0.70	69
453	117	-7.86	1.67	2.76	153.6	10.2	117.9	4.2	4.8	7.9	10.3	4.34×10^{-9}	0.40	49
454	422	-7.83	1.50	3.00	151.8	12.9	118.0	4.8	5.7	1.8	14.2	4.32×10^{-9}	0.40	95
455	147	-7.80	-1.51	2.99	155.6	10.8	117.3	4.5	4.3	1.2	7.8	4.30×10^{-9}	0.40	131
456	197	7.84	-1.32	2.94	16.8	8.9	62.6	5.6	4.1	6.7	5.9	4.26×10^{-9}	0.35	111
457	412	-7.82	-1.49	3.01	27.6	12.8	65.3	1.7	7.7	4.9	10.8	4.13×10^{-9}	0.69	230
458	288	-7.84	-1.45	2.98	158.2	11.1	117.3	4.0	3.0	0.7	8.3	4.13×10^{-9}	0.37	285
459	410	-7.75	-1.48	-3.10	29.0	14.9	65.3	-5.3	-5.3	3.5	10.8	4.12×10^{-9}	0.59	246
460	160	-8.92	-0.03	2.69	176.3	0.5	180.0	-1.2	1.5	2.9	5.4	3.08×10^{-9}	0.42	71
						Co	ntinued o	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curva	ature	tw	ist	rate	ΔF	stens
Tallk	iu	Х	у	Z	Х	У	Z	А	В	Α	В	Tate	ΔD	steps
461	234	-8.97	0.20	2.53	179.5	1.3	179.0	0.2	2.4	5.5	5.8	3.07×10^{-9}	0.42	49
462	180	-9.12	0.29	-2.14	5.6	7.5	1.2	1.9	-2.8	12.3	9.1	3.01×10^{-9}	0.82	300
463	196	-9.04	0.22	2.36	2.3	3.5	0.2	-0.3	1.6	5.7	8.8	3.00×10^{-9}	0.82	245
464	144	-8.97	0.20	-2.43	179.3	3.1	178.8	-0.8	3.2	5.1	4.6	2.98×10^{-9}	0.41	139
465	268	-9.06	0.15	-2.32	1.3	6.5	2.1	2.5	-0.7	2.0	8.1	2.96×10^{-9}	0.82	187
466	137	-9.07	0.01	2.36	4.4	4.8	2.2	-1.3	1.8	2.0	4.1	2.89×10^{-9}	0.81	77
467	484	-8.86	-0.27	2.89	171.7	1.5	179.7	-0.4	1.4	9.9	5.4	2.88×10^{-9}	0.40	88
468	445	-8.98	-0.05	2.61	178.8	2.2	179.0	-1.0	1.8	0.3	3.9	2.86×10^{-9}	0.40	87
469	324	-9.10	-0.02	2.33	6.1	5.9	4.1	-2.4	4.6	7.8	6.7	2.70×10^{-9}	0.79	118
470	393	0.76	3.21	3.82	17.8	17.9	15.0	-2.6	-2.5	0.9	1.0	9.87×10^{-10}	0.55	300
471	398	-1.18	6.01	2.29	43.0	76.7	8.5	6.4	17.4	5.4	3.7	2.03×10^{-10}	0.82	300
472	355	-8.24	3.21	-3.35	59.0	28.3	66.9	-5.2	4.4	8.5	13.6	1.88×10^{-10}	0.74	300
473	19	-9.67	1.91	3.32	3.7	8.5	26.6	7.4	-3.3	5.5	6.9	8.50×10^{-11}	0.71	122
474	153	-9.62	1.77	3.34	178.5	8.5	152.0	7.6	-3.5	3.3	3.8	8.29×10^{-11}	0.51	51
475	299	-9.74	-1.55	3.05	177.3	5.3	152.2	7.1	-3.3	12.5	11.5	8.29×10^{-11}	0.53	83
476	76	-9.81	-1.87	2.86	173.9	3.8	154.1	7.6	-4.9	4.8	11.6	8.22×10^{-11}	0.52	160
477	281	1.18	7.83	4.86	102.4	79.8	97.4	22.9	-4.0	5.0	2.5	8.04×10^{-11}	0.62	139
478	34	-9.11	5.28	1.67	149.2	8.2	132.2	8.2	-4.0	8.5	10.1	7.72×10^{-11}	0.55	225
479	43	-9.26	4.96	1.99	152.4	7.1	134.6	7.2	-4.5	1.0	8.5	7.65×10^{-11}	0.55	162
480	377	-9.30	4.90	-2.09	149.2	8.8	135.9	-6.7	5.5	1.0	2.4	7.24×10^{-11}	0.54	213
481	359	-9.71	1.81	3.30	177.0	9.1	151.7	4.3	-3.5	1.8	1.4	7.05×10^{-11}	0.46	113
482	6	-8.62	5.00	3.87	31.1	20.1	51.2	8.5	-1.8	16.2	8.6	6.87×10^{-11}	0.74	150
483	458	-5.74	8.43	-2.19	9.0	5.4	37.6	-5.5	3.3	10.8	15.1	3.69×10^{-11}	0.59	44
484	433	-9.28	2.45	1.17	142.6	21.4	121.7	7.7	1.8	6.7	11.9	3.50×10^{-11}	0.61	75
485	425	-9.27	2.74	-0.95	145.1	19.4	125.9	-5.9	-1.9	0.5	5.6	3.41×10^{-11}	0.60	207
486	366	-5.39	8.33	2.86	161.9	3.9	142.2	9.2	-4.7	4.1	2.9	3.32×10^{-11}	0.43	92
						Co	ntinued of	n next pag	e					

Table 1 – Continued from previous page

rank	id	t	ranslation			rotation		curv	ature	tw	vist	rate	ΔF	stens
Talik	iu	Х	у	Z	х	У	Z	А	В	Α	В	Tate		sicps
487	282	-5.31	8.41	2.75	157.0	9.5	139.0	7.0	-3.8	6.6	3.4	3.31×10^{-11}	0.43	82
488	54	-7.18	7.38	1.73	155.1	7.3	116.1	14.3	-2.6	9.1	2.6	3.17×10^{-11}	0.63	225
489	39	-5.39	8.44	2.50	163.3	6.0	140.0	7.0	-3.1	9.8	10.8	3.16×10^{-11}	0.41	56
490	430	-5.67	8.12	3.09	162.3	1.2	145.2	4.9	-3.3	5.6	4.2	3.16×10^{-11}	0.41	158
491	104	-5.51	8.47	2.38	17.4	7.6	39.6	3.8	-4.0	10.2	10.7	3.13×10^{-11}	0.57	56
492	295	-5.51	8.45	2.34	161.0	8.8	140.3	2.6	-3.0	12.0	7.9	3.03×10^{-11}	0.40	79
493	471	-10.04	0.30	5.07	154.2	33.2	139.4	7.8	-4.5	1.3	5.6	1.46×10^{-11}	0.80	107
494	403	-5.86	6.36	1.92	25.2	20.6	42.6	9.0	0.6	5.8	16.0	1.21×10^{-11}	0.74	300
495	225	-5.66	7.81	1.78	115.8	38.8	98.4	8.2	-2.6	4.9	8.3	1.18×10^{-11}	0.83	224
496	371	-5.41	7.90	1.69	61.4	38.3	79.2	6.8	-1.4	6.7	9.5	1.14×10^{-11}	0.65	142
497	276	-6.70	-0.83	3.86	37.6	34.2	11.8	2.6	-1.3	1.1	8.5	4.60×10^{-12}	1.02	300
498	90	2.46	9.64	2.95	154.1	3.4	141.4	1.0	-8.3	7.2	1.2	1.00×10^{-13}	1.00	300
499	183	-2.75	5.23	3.66	90.7	52.5	13.7	-0.7	-0.1	0.4	0.2	4.88×10^{-15}	-0.14	300
500	245	1.36	10.91	-1.16	50.0	27.5	72.9	-0.8	-0.3	0.6	0.2	2.69×10^{-17}	0.10	300

Table 1 – Continued from previous page

3 Determining an Optimal Value for ω

In our optimization process, the objective function $L(\mathbf{x}) = E(\mathbf{x}) - \omega \log(T_{RP}(\mathbf{x})^2)$, where $E(\mathbf{x})$ represents the energy and $|T_{RP}(\mathbf{x})|^2$ signifies the effective SF coupling for the nuclear configuration \mathbf{x} , necessitates the careful selection of the free parameter ω to achieve a balance between optimizing energy and effective SF coupling. To this end, we adjust ω in increments of 0.1, ranging from 0.1 to 10. This adjustment is performed across the same set of 20 randomly translated and rotated ethene and PBI dimers, each optimized to minimize $L(\mathbf{x})$.

3.1 Model system: ethene

The average and standard deviation of the convergent steps, along with the effective SF coupling (SFC) and energy for each ω , are depicted in Figure 2. The graphical representation in Figure 2b illustrates a strong positive correlation between effective SF coupling and energy, complicating the choice of an ideal ω . Since our goal is to minimize energy while maximizing effective SF coupling, we select the value of ω that maximizes the hysteresis between these two parameters as optimal. Consequently, $\omega = 0.3$ has been identified as the preferred choice. Moreover, values exceeding this threshold tend to exhibit greater instability in terms of convergence steps and energy, as indicated by their standard deviations.

Figure 2: Optimization procedure with varying ω from 0.1 to 1.0 in steps of 0.1 for the same set of 20 randomly chosen ethylene dimers.

3.2 Actual system: PBI

Repeating this ω scan considering the PBI dimer gives very similar results (see Figure 3). The only notable difference can be found around $\omega > 0.5$. In this region some traceries failed due to convergence errors in the SCF cycle. This happens when some atoms get too close in distance during the optimization. The selected value of $\omega = 0.3$ has been identified as a "good" value also for the PBI system and is therefore employed in our study.

Figure 3: Optimization procedure with varying ω from 0.1 to 1.0 in steps of 0.1 for the same set of 20 randomly chosen PBI dimers.

4 Stability of PCA and K-Means Clustering Outcomes Under Variable Parameters

To explore the impact of varying input parameters on the results of PCA and k-means clustering, we conducted additional analyses modifying the number of PCA dimensions and cluster counts, and selectively excluding the least significant PCA dimensions. This approach was intended to rigorously test the robustness of our findings. Importantly, despite these variations, each analysis consistently identified distinct clusters that correspond to the specific structural motifs of "twisting," "curvature", and "planarity". These results are detailed in the following tables and affirm the reliability of our dimension reduction and clustering strategy. The consistent attribution of these motifs to particular clusters across different parameter settings underscores the stability and validity of the analytical framework used in our study.

Table 2: PCA results with the following settings: dimensions used: 3; clusters used: 4; z-translation ignored: True; x-rotation ignored: True; y-rotation ignored: True; only positive translations and degrees: True; Dimension 1: 33% of the variance. Dimension 2: 22% of the variance. Dimension 3: 13% of the variance. The mean parameters for each cluster are given.

cluster	tı	ranslatio	n		rotati	on	conca	vity	tw	rist	coupling
clusici	X	У	Z	Х	у	Z	А	В	Α	В	couping
1	3.07	0.70	3.00	0.0	0.0	-7.1	-18.9	19.4	7.2	7.9	2.15×10^{-7}
2	1.45	1.35	3.00	0.0	0.0	-25.8	3.8	4.6	21.7	14.5	2.99×10^{-7}
3	1.45	3.75	3.00	0.0	0.0	43.2	-1.3	5.7	8.6	7.3	1.68×10^{-7}
4	1.46	3.30	3.00	0.0	0.0	-49.3	3.8	1.6	10.0	5.4	1.47×10^{-7}

Table 3: PCA results with the following settings: dimensions used: 3; clusters used: 4; z-translation ignored: True; x-rotation ignored: True; y-rotation ignored: True; only positive translations and degrees: False; Dimension 1: 26% of the variance. Dimension 2: 19% of the variance. Dimension 3: 16% of the variance. The mean parameters for each cluster are given.

cluster	tı	ranslation			rotatio	on	conca	vity	tw	ist	coupling
cluster	Х	У	Z	Х	у	Z	А	В	A	В	couping
1	-2.20	-0.02	3.00	0.0	0.0	120.6	-9.6	13.6	6.6	5.9	2.10×10^{-7}
2	-0.25	-0.14	3.00	0.0	0.0	81.5	4.9	2.5	20.0	13.1	2.72×10^{-7}
3	0.69	4.29	3.00	0.0	0.0	79.7	2.0	2.0	7.6	6.0	1.43×10^{-7}
4	2.22	0.94	3.00	0.0	0.0	80.3	-20.6	21.2	9.7	10.1	1.83×10^{-7}

Table 4: PCA results with the following settings: dimensions used: 3; clusters used: 4; z-translation ignored: True; x-rotation ignored: True; y-rotation ignored: False; only positive translations and degrees: False; Dimension 1: 24% of the variance. Dimension 2: 18% of the variance. Dimension 3: 15% of the variance. The mean parameters for each cluster are given.

cluster	tı	anslation			rotatio	n	conca	vity	tw	ist	coupling
cluster	X	у	Z	Х	У	Z	А	В	Α	В	couping
1	-1.79	0.74	3.00	0.0	3.9	101.3	-5.9	10.4	5.5	4.7	2.03×10^{-7}
2	-0.09	-0.21	3.00	0.0	5.4	72.8	5.0	2.5	19.5	12.7	2.69×10^{-7}
3	0.76	4.77	3.00	0.0	10.7	94.6	1.8	1.3	9.4	7.4	1.28×10^{-7}
4	1.58	0.87	3.00	0.0	5.6	97.7	-19.7	20.9	9.7	9.9	1.91×10^{-7}

Table 5: PCA results with the following settings: dimensions used: 3; clusters used: 4; z-translation ignored: True; x-rotation ignored: False; y-rotation ignored: False; only positive translations and degrees: False; Dimension 1: 23% of the variance. Dimension 2: 20% of the variance. Dimension 3: 16% of the variance. The mean parameters for each cluster are given.

cluster	tı	ranslation		rotation			conca	avity	tw	vist	coupling	
cluster	X	У	Z	X	У	Z	A	B	Α	В	couping	
1	0.12	-0.21	3.00	92.1	6.0	89.5	4.5	3.4	20.7	13.7	2.79×10^{-7}	
2	-0.51	0.94	3.00	175.9	5.3	148.1	-11.8	16.0	7.3	6.9	2.03×10^{-7}	
3	0.10	4.35	3.00	79.0	9.6	79.8	3.6	-0.2	8.6	6.4	1.27×10^{-7}	
4	-0.05	0.46	3.00	3.4	3.5	34.2	-12.4	13.9	7.4	7.1	1.97×10^{-7}	

Table 6: PCA results with the following settings: dimensions used: 3; clusters used	: 4; z-translation	ignored:	False; x-rot	ation ignored:	False; y-re	otation igno	red:
False; only positive translations and degrees: False; Dimension 1: 23% of the variance	e. Dimension 2:	19% of th	ne variance.	Dimension 3:	15% of th	e variance.	The
mean parameters for each cluster are given.							

cluster	tı	ranslation	rotation			concavity		tw	ist	coupling	
cluster	X	У	Z	X	у	Z	A	В	Α	В	coupling
1	0.02	4.01	0.83	83.8	9.1	82.3	4.7	-1.8	8.5	6.4	1.31×10^{-7}
2	0.22	-0.06	2.81	89.2	6.3	87.8	3.8	4.2	20.9	13.8	2.75×10^{-7}
3	-0.50	1.15	3.12	174.7	5.6	147.3	-11.4	15.9	7.3	6.8	2.02×10^{-7}
4	-0.06	0.64	2.97	5.6	3.8	35.7	-12.1	13.8	7.3	7.0	1.95×10^{-7}

Table 7: PCA results with the following settings: dimensions used: 5; clusters used: 4; z-translation ignored: True; x-rotation ignored: True; y-rotation ignored: True; only positive translations and degrees: True; Dimension 1: 33% of the variance. Dimension 2: 22% of the variance. Dimension 3: 13% of the variance. Dimension 4: 11% of the variance. Dimension 5: 9% of the variance. The mean parameters for each cluster are given.

cluster	tı	anslatio	n	rotation			conca	vity	tw	ist	coupling	
cluster	X	y z		x y		Z	А	В	A	В		
1	1.75	2.04	3.00	0.0	0.0	1.6	-18.9	26.8	12.1	10.3	1.93×10^{-7}	
2	1.53	1.34	3.00	0.0	0.0	-13.5	5.0	2.9	21.8	12.1	2.75×10^{-7}	
3	3.37	0.75	3.00	0.0	0.0	-12.9	-13.8	11.3	4.6	6.6	2.01×10^{-7}	
4	1.25	4.31	3.00	0.0	0.0	22.1	0.7	4.0	7.0	6.7	1.57×10^{-7}	

Table 8: PCA results with the following settings: dimensions used: 3; clusters used: 3; z-translation ignored: True; x-rotation ignored: True; y-rotation ignored: True; only positive translations and degrees: True; Dimension 1: 33% of the variance. Dimension 2: 22% of the variance. Dimension 3: 13% of the variance. The mean parameters for each cluster are given.

cluster	cluster translation				rotation			concavity		rist	coupling	
cluster	X	У	Z	х	у	Z	А	В	A	В	couping	
1	1.36	3.91	3.00	0.0	0.0	23.7	0.9	3.8	8.5	6.4	1.58×10^{-7}	
2	2.93	0.95	3.00	0.0	0.0	-9.5	-17.0	17.9	7.3	7.7	2.08×10^{-7}	
3	1.44	1.55	3.00	0.0	0.0	-23.7	3.7	4.4	20.7	13.8	2.81×10^{-7}	

Table 9: PCA results with the following settings: dimensions used: 10; clusters used: 3; z-translation ignored: True; x-rotation ignored: True; y-rotation ignored: True; only positive translations and degrees: True; Dimension 1: 33% of the variance. Dimension 2: 22% of the variance. Dimension 3: 13% of the variance. Dimension 4: 11% of the variance. Dimension 5: 9% of the variance. Dimension 6: 7% of the variance. Dimension 7: 5% of the variance. Dimension 8: 0% of the variance. Dimension 9: 0% of the variance. Dimension 10: 0% of the variance. The mean parameters for each cluster are given.

translation				rotation			concavity		tw	vist	coupling	
cluster	Х	У	Z	X	у	Z	А	В	A	В	couping	
1	1.48	1.28	3.00	0.0	0.0	-10.9	5.3	0.6	20.6	11.6	2.70×10^{-7}	
2	2.89	0.88	3.00	0.0	0.0	-8.3	-16.4	17.3	6.9	8.0	2.05×10^{-7}	
3	1.31	4.48	3.00	0.0	0.0	19.9	-0.4	6.5	7.6	6.9	1.53×10^{-7}	

5 Influence of Twisting on Effective SF Coupling

The results obtained by the functionality optimization procedure indicate, that monomer twisting in the PBI might be beneficial for the strength of the effective singlet fission coupling. To gain a deeper understanding of the interplay between twisting and coupling strength, we carried out further calculations, systematically scanning the effective SF coupling as a function of both molecular twisting angles in two chosen dimer configurations from our optimizations. The first structural motif (id = 316) bears comparatively large twisting angles for both monomers (A: 28.2° , B: 17.1°). The second one (id = 252) exhibits only subtle twisting angles below 10° and comparatively pronounced curvatures. For configuration 316, the highest effective SF coupling (see Figure 5a) is found for two planar monomers, however, a large twisting angle of 30° in momomer A is also favorable for the effective SF coupling. In contrast, for the ground state energy (see Figure 5b), a twist of about 20° in both monomers corresponds to a minimum, which is directly reflected in the scan of the objective function (see Figure 5c).

For configuration 252, the effective SF coupling is highest when monomer A exhibits strong twisting (30°), while monomer B is planar (see Figure 6a). Again the ground state energy (see Figure 6b) prefers a twist of about 15° in both monomers, which also corresponds to the minimum in the scan of the objective function (see Figure 6c). Therefore, according to our applied model for the description of effective SF couplings SF, twisting of one monomer seems to have a beneficial effect on the strength of the coupling, however, these conformations are mainly suppressed in the functionality optimization due to the energy constraint in the objective function.

In order to elucidate the effect of twisting on the energy condition required for efficient singlet fission, we further scanned the energy of the E_{S_1} and E_{T_1} of the monomer PBI as a function of the twisting angle. Energy calculations were performed using CASPT2 with the ccpVDZ basis set and an active space of 4 electrons in 4 orbitals within the Bagel software package. The plot in Figure 7 illustrates the variations of E_{S_1} , E_{T_1} , and $2E_{T_1} - E_{S_1}$ with respect to the twist angle. The calculation reveals that as the twist angle increases, the energy of the singlet excited state, E_{S_1} , decreases, while simultaneously, the energy of the triplet excited state, E_{T_1} , increases. Consequently, the energy difference $2E_{T_1} - E_{S_1}$ increases, indicating that twisting is an unfavorable structural change for singlet fission.

(a) Configuration 316 bears high twisting angles (A: 28.2°, B: 17.1°). The curvature of $8.7 \times 10^{-3} \text{ Å}^{-2}$ and $1.5 \times 10^{-3} \text{ Å}^{-2}$ is small. Furthermore, this configuration has a pronounced z-rotation of 53.6° and small rotations in x and y direction below 5°. The translations in x and y direction are below 0.7 Å. So the dimers are stacked with a z-distance of 3.18 Å.

(b) Configuration 252 exhibits only subtle twisting angles below 10° but pronounced curvature of $-22.6 \times 10^{-3} \text{ Å}^{-2}$ and $23.5 \times 10^{-3} \text{ Å}^{-2}$ and small rotations below 8° as well as small translations in x and y direction below 0.5 Å. So the dimers are stacked with a z-distance of 3.40 Å.

Figure 4: Two chosen exemplary configurations obtained by the functionality optimization procedure that are considered for the twisting mode scans.

6 Davydov splitting

The Davydov splitting values calculated for the mean structures using equation,

$$\Delta E_{DS} = 4 \left| (h_A l_A | h_B l_B) + \langle l_A | \hat{\mathbf{F}} | l_B \rangle \langle h_A | \hat{\mathbf{F}} | h_B \rangle \right| \tag{1}$$

are shown in Table 10. **PBI-C2** has the highest ΔE_{DS} , **PBI-C1** has the second highest ΔE_{DS} , **PBI-C3** has the third highest ΔE_{DS} , and **PBI-C4** has the lowest ΔE_{DS} . Thus **PBI-C2** has the highest effective SF coupling and the highest ΔE_{DS} . The Davydov interaction becomes particularly relevant when the singlet fission (SF) process is sufficiently endoergic. In the cases of **PBI-C1**_A, **PBI-C1**_B, **PBI-C2**_A, **PBI-C2**_B, and **PBI-C4**_A, we observe that $2E_{T_1} - E_{S_1}$ is negative, indicating that singlet fission is exoergic. Thus, we assume that the Davydov splitting is not significantly influential.

Structure	ΔE_{DS}
PBI-C1	0.4165 eV
PBI-C2	0.5628 eV
PBI-C3	0.3447 eV
PBI-C4	0.2798 eV

Table 10: Davydov splitting

(b) AM1+D groundstate energy scan.

(c) Objective function scan.

Figure 5: Scans for configuration 316.

(b) AM1+D groundstate energy scan.

(c) Objective function scan.

Figure 6: Scans for configuration 252).

Figure 7: E_{S_1} and E_{T_1} energy scan (CASPT2) along the twisting mode.