Supplementary information

Enhanced Near-Infrared Optical Transmission in Zinc Germanium Phosphide Crystals via Precise Magnesium Doping

Shichao Cheng^a, Xueyan Zhang^a, Xiangran Kong^a, Tao Liu^a, Jingdong Yan^a,

Tetiana Prikhna^b, Yunfei Shang^{a,*}, Zuotao Lei^{a,*} and Chunhui Yang^a

^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China

^b V. N. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine

Experiment section

X-ray Diffraction. The powder X-ray diffraction patterns were collected by a Bruker D2 PHASER Powder X-ray diffractometer using Cu K α radiation ($\lambda = 1.54059$ Å) at room temperature. The 2 θ range was set from 10° to 80° and scan was taken at a step size of 0.01° and a fixed time of 0.5 s. The mercury program was used to calculate simulated patterns from single-crystal reflection data. The X-ray rocking curves of the crystals were measured on PANalytical Empyrean high resolution x-ray diffractometer with Cu K α radiation ($\lambda = 1.54059$ Å).

UV-vis-NIR. UV-Vis-NIR diffuse transmittance was performed at room temperature on a computer-controlled Agilent Carry 5000 UV-vis-NIR spectrometer equipped with an integrating sphere.

Elemental Analysis. The ZGP nanoplate orientated normal to the (001) face with the size of 50 nm was fabricated by focused ion beam-scanning electron microscopy (FIB-SEM) system to be measured by a spherical aberration Cs-STEM (Titan Themis Cubed G2 60-300). The percentage of chemical element content was measured by scanning transmission electron microscopy equipped with energy dispersive X-ray spectroscopy (STEM-EDS). To determine the concentrations of magnesium in the doped samples, glow discharge mass spectrometry (GDMS) measurements were taken using a Nu instruments-Astrum system which provides a ppb/ppt (weight) level detection limit.

Photoluminescence. In addition, PL spectra were collected on a 1 mm-thick ZGP crystal using a spectrometer (TR550MST) with a 532 nm laser. The PL data were obtained from liquid nitrogen using a grating spectrometer and either a PMT (GaAs response), or Ge detector. Temperature-dependent PL spectra of ZGP crystal were collected 100 K. All the luminescence dynamics were recorded with a 500 MHz Tektronix digital oscilloscope.

Electron paramagnetic resonance. The EPR was carried out using a Bruker EMX PLUS spectrometer operating at the X-band ($\nu \approx 9.41$ GHz). Temperatures in the range

100–300 K were achieved with Oxford Instruments continuous flow cryostats. The sample temperature 100 K for the Zn vacancy signal.

Theoretical Calculation. The Vienna Ab-initio Simulation Package (VASP) was employed to perform all the density functional theory (DFT) calculations. The generalized gradient approximation (GGA) with the Perdew–Buker–Ernzerhof (PBE) functional was adopted¹. The projected augmented wave (PAW) potentials were chosen to describe the core-electron interactions and take valence electrons into account using a plane-wave basis set with a kinetic energy cutoff of 400 eV. Partial occupancies of the Kohn-Sham orbitals were allowed using the Gaussian smearing method and a width of 0.01 eV. The electronic energy was considered self-consistent when the energy change was smaller than 10⁻⁶ eV. The Brillouin zone integration was performed using $2 \times 2 \times 1$. On the LOBSTER side²⁻⁵, the original basis set and its basic functions (*s*, *p* and *d*) manage to reconstruct the PAW electronic structure. To realize a more accurate description of the bandgap, the Heyd–Scuseria–Ernzerhof (HSE06) hybrid DFT functional was performed.

Defect formation energy of the charge state q dependent on the Fermi level position were calculated in accordance with the literature^{6, 7}:

$$\Delta E_f(\alpha \cdot q) = E(\alpha \cdot q) - E(p e r) - \Delta n_i \mu_i + q E_F$$

where $E(\alpha \cdot q)$ means the total energy calculated from the supercell with defects α in its charge state q, and E(per) is the total energy of the perfect crystal supercells. μ_i is the atomic chemical potential of an atom reservoir of element i, Δn_i is the change in the number of atoms of species i, which has been added ($\Delta n_i > 0$) or removed ($\Delta n_i < 0$). E_F is the Fermi energy referenced to the VBM level.

	V_{Zn}	V _P	Ge _{Zn}	Ge _P
Defects formation energy	-3.57eV	-4.48 eV	-1.09 eV	2.25eV

Table S1. Calculated formation energies of different point defects in ZGP crystals.

Table S2. Calculated total energy of ZGP and ZGP-Mg supercell structures.

	ZGP	ZGP-Mg	
Total energy	-548.99 eV	-553.68 eV	

Table S3. Calculated cell parameters of ZGP-V $_{Zn}$ and ZGP-Mg structures.

	a (Å)	<i>b</i> (Å)	c (Å)	α (°)	β (°)	γ (°)
ZGP-V _{Zn}	5.54	5.54	10.09	90	90	90
ZGP-Mg	5.49	5.49	10.74	90	90	90

Table S4. Reported absorption coefficients and optical transmittances at 2 μm of grown ZGP crystals.

Crystal		Absorption	Optical	
thickness	Growth	coefficient for	transmittance	Pafaranca
(mm)	Methods	2.09 µm o light	at 2µm	Reference
(IIIII)		(cm^{-1})	(%)	
1.3	VB ^a	1.3	45	8
1.5	VB	-	46	9
2.5	VB	0.25	49	10
3	VB	-	40	11
2	VB	0.12	-	12
3	VB	-	49	13
10	VB	0.29	-	14
2	VB	-	45	15
4	VB	-	47	16
12	HGF [♭]	0.26	-	17
6	VB	-	49	18
1	VB	0.02	56	This work
6	VB	0.11	50.5	This work

a: vertical Bridgman technique (VB)

b: horizontal-gradient-freeze (HGF)

Figure S1. Calculated enlarged optical absorption spectra of the ZGP-V_{Zn} and ZGP-Mg structures.

Figure S2. Rocking curves of (004) crystallographic plane in magnesium-doped and undoped ZGP single crystals.

Figure S3. Rocking curves of (200) crystallographic plane in ZGP-M2 and undoped ZGP single crystals.

Figure S4. (a) XRD patterns were obtained from different segments of the ZGP-M2 crystals; (b) The XRD patterns specifically from the middle portions of the ZGP-M1, ZGP-M2, and ZGP-M3 crystals.

Figure S5. (a) STEM image, (b) STEM-EDS pattern of a ZGP nanoplate and (c) corresponding STEM-EDS chemical element maps.

Figure S6. HAADF-STEM images of a chalcopyrite ZGP-M2 nanoplate and intensity profiles recorded by scanning along the direction of the ZGP-M2 (001) plane from the image (yellow line).

Figure S7. (a) The PL spectra of the samples were recorded at a temperature of 100 K, covering a wavelength range of 600-900 nm and (b) 900-1700 nm.

Figure S8. Amplified transmission spectra of ZGP and magnesium-doped ZGP at cutoff edge region (a) and near-infrared region (b).

Figure S9. Electron localization function maps of (a) ZGP- V_{Zn} structure, and (b) ZGP-Mg structure.

Figure S10. The high-resolution XPS spectra of (a) Mg 1s, (b) Zn 2p, (c) Ge 3d and (d) P 2p orbitals in ZGP-M2 crystal; (e) Zn 2p, (f) Ge 3d and (g) P 2p orbitals in ZGP crystal.

References

- J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- S. Maintz, V. L. Deringer, A. L. Tchougreeff and R. Dronskowski, Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids, *J. Comput. Chem.*, 2013, 34, 2557-2567.
- 3. S. Maintz, V. L. Deringer, A. L. Tchougreeff and R. Dronskowski, LOBSTER: a tool to extract chemical bonding from plane-wave based DFT, *J. Comput. Chem.*, 2016, **37**, 1030-1035.
- R. Dronskowski and P. E. Bloechl, Crystal orbital Hamilton populations (COHP): energyresolved visualization of chemical bonding in solids based on density-functional calculations, *J. Phys. Chem.*, 1993, 97, 8617-8624.
- V. L. Deringer, A. L. Tchougréeff and R. Dronskowski, Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets, *J. Phys. Chem. A*, 2011, 115, 5461-5466.
- S. Lany and A. Zunger, Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs, *Phys. Rev. B*, 2008, 78.
- Y. Koyama, H. Arai, I. Tanaka, Y. Uchimoto and Z. Ogumi, First principles study of dopant solubility and defect chemistry in LiCoO₂, *J. Mater. Chem. A*, 2014, 2, 11235-11245.
- Q. Fan, S. Zhu, B. Zhao, B. Chen, Z. He, J. Cheng and T. Xu, Influence of annealing on optical and electrical properties of ZnGeP₂ single crystals, *J. Cryst. Growth.*, 2011, **318**, 725-728.
- 9. Y. J. Yang, Y. J. Zhang, Q. T. Gu, H. J. Zhang and X. T. Tao, Growth and annealing characterization of ZnGeP₂ crystal, *J. Cryst. Growth.*, 2011, **318**, 721-724.
- G. D. Zhang, X. T. Tao, S. P. Wang, G. D. Liu, Q. Shi and M. H. Jiang, Growth and thermal annealing effect on infrared transmittance of ZnGeP₂ single crystal, *J. Cryst. Growth.*, 2011, 318, 717-720.

- X. Zhao, S. F. Zhu and Y. Q. Sun, Growth of ZnGeP₂ Single Crystal by Three-Temperature-Zone Furnace, *Advanced Materials Research*, 2011, **179-180**, 945-948.
- 12. Z. Y. Wang, M. S. Mao, H. X. Wu, Y. B. Ni, C. B. Huang and X. D. Cheng, Study on annealing of infrared nonlinear optical crystal ZnGeP₂, *J. Cryst. Growth.*, 2012, **359**, 11-14.
- H. X. Wu, Z. Y. Wang, Y. B. Ni, M. S. Mao, C. B. Huang and X. D. Cheng, Vertical gradient freeze growth of ZnGeP₂ crystals for nonlinear optical applications, *J. Cryst. Growth.*, 2012, 353, 158-161.
- G. D. Zhang, X. T. Tao, S. P. Wang, Q. Shi, H. P. Ruan and L. L. Chen, Growth improvement and quality evaluation of ZnGeP₂ single crystals using vertical Bridgman method, *J. Cryst. Growth.*, 2012, 352, 67-71.
- 15. L. Q. Cao, B. J. Zhao, S. F. Zhu, B. J. Chen, Z. Y. He, D. H. Yang, H. Liu and H. Xie, Annealing and optical homogeneity of large ZnGeP₂ single crystal, *Rare Metals*, 2016, **41**, 3214-3219.
- D. H. Yang, B. J. Zhao, B. J. Chen, S. F. Zhu, Z. Y. He, Z. R. Zhao and M. D. Liu, Growth of ZnGeP₂ single crystals by modified vertical Bridgman method for nonlinear optical devices, *Mater. Sci. Semicond. Process.*, 2017, 67, 147-151.
- 17. P. G. Schunemann, K. L. Schepler and P. A. Budni, Nonlinear Frequency Conversion Performance of AgGaSe₂, ZnGeP₂, and CdGeAs₂, *MRS Bull.*, 2013, **23**, 45-49.
- Z. Lv, Y. Shen, Y. Wen, E.-P. Wang, Z.-M. Wang, W.-L. Li, Y. Bo and Q.-J. Peng, High power widely tunable mid-IR (5–7.2 μm) ZnGeP₂ optical parametric oscillator pumped by a 2.09 μm laser, *Infrared Phys. Technol.*, 2023, **134**, 104879.