## Effect of Heterocyclic and Non-Heterocyclic Units on FDT-Based Hole Transport Materials for Efficient Perovskite Solar Cells: A DFT Study

Mohd Shavez and S. Mahapatra $^{*}$ 

School of Chemistry, University of Hyderabad, Hyderabad 500046, India

E-mail: susanta.mahapatra@uohyd.ac.in

## List of Figures

| S1 | Optimized ground state geometries for $\mathbf{FDT-2}$ and $\mathbf{FDT-3}$ calculated at                                                         |    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | BMK/6-31G(d,p) level.                                                                                                                             | 5  |
| S2 | Optimized ground state geometries for ${\bf FDT-4}$ and ${\bf FDT-5}$ calculated at                                                               |    |
|    | $BMK/6-31G(d,p) \text{ level.} \dots \dots$ | 6  |
| S3 | Optimized ground state geometries for ${\bf FDT-6}$ and ${\bf FDT-7}$ calculated at                                                               |    |
|    | $BMK/6-31G(d,p) \text{ level.} \dots \dots$ | 7  |
| S4 | The spatial orbital distributions of HOMOs and LUMOs of ${\bf FDT-4}$ to ${\bf FDT-7}$ .                                                          | 8  |
| S5 | The $\pi\text{-stacked}$ structures of two adjacent fragments for FDT-3 to FDT-5                                                                  | 9  |
| S6 | The $\pi\text{-stacked}$ structures of two adjacent fragments for FDT-6 to FDT-7                                                                  | 10 |

## List of Tables

| S1 | Energies of HOMO and LUMO for $\mathbf{FDT}$ obtained in dichloromethane solvent |   |  |  |  |  |
|----|----------------------------------------------------------------------------------|---|--|--|--|--|
|    | using B3LYP, PBE0, HSE06, and BMK functionals and 6-31Gd,p) basis set.           |   |  |  |  |  |
|    | All the energies are in the eV                                                   | 4 |  |  |  |  |
| S2 | Optimal range separation parameters ( $\omega$ ) for all HTMs                    | 4 |  |  |  |  |

Table S1: Energies of HOMO and LUMO for **FDT** obtained in dichloromethane solvent using B3LYP, PBE0, HSE06, and BMK functionals and 6-31Gd,p) basis set. All the energies are in the eV.

| FDT               | B3LYP | PBE0  | HSE06 | BMK   | $Expt.^{1}$ |
|-------------------|-------|-------|-------|-------|-------------|
| E <sub>HOMO</sub> | -4.50 | -4.72 | -4.35 | -5.15 | -5.16       |
| $E_{\rm LUMO}$    | -1.80 | -2.02 | -1.66 | -2.45 | -2.28       |

Table S2: Optimal range separation parameters (  $\omega$ ) for all HTMs.

| HTMs | FDT   | FDT-1 | FDT-2 | FDT-3 | FDT-4 | FDT-5 | FDT-6 | FDT-7 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| ω    | 0.006 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |



Figure S1: Optimized ground state geometries for  ${\bf FDT-2}$  and  ${\bf FDT-3}$  calculated at BMK/6-31G(d,p) level.



Figure S2: Optimized ground state geometries for  ${\bf FDT-4}$  and  ${\bf FDT-5}$  calculated at BMK/6-31G(d,p) level.



Figure S3: Optimized ground state geometries for  ${\bf FDT-6}$  and  ${\bf FDT-7}$  calculated at BMK/6-31G(d,p) level.



Figure S4: The spatial orbital distributions of HOMOs and LUMOs of  ${\bf FDT-4}$  to  ${\bf FDT-7}$  .



Figure S5: The  $\pi$ -stacked structures of two adjacent fragments for **FDT-3** to **FDT-5**.



Figure S6: The  $\pi$ -stacked structures of two adjacent fragments for **FDT-6** to **FDT-7**.

## References

 Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H., et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells. *Nat. Energy* 2016, 1, 1–7.