Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information

Revisiting the Thermal Decomposition Mechanism of MAPbI₃

Weijie Yang^{a,b,c}, Ruiyang Shi^{a,b,c}, Huan Lu^{a,b,c}, Kailong Liu^{a,b,c}, Qingqi Yan^{a,b,c}, Yang Bai^{a,b,c}, Xunlei Ding^{d,e}, Hao Li^{*,f}, and Zhengyang Gao^{*a,b,c}

^a Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China.

^b Hebei Key Laboratory of Low Carbon and High-Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, Hebei, China.

^c Baoding Key Laboratory of Low Carbon and High-Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003, Hebei, China.

^d Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beijing 102206, P. R. China.

^e Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071000, Hebei, P. R. China.

^f Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980–8577, Japan

* Corresponding Author

Hao Li (li.hao.b8@tohoku.ac.jp)

Zhenyang Gao (gaozhyan@163.com)

The Gibbs free energies were obtained according to the equation:

$$G = E_{ele} + ZPE - TS \tag{S1}$$

where E_{ele} is the electronic energy of the system in the ground state, T is the temperature (herein we set it to 300 K), S is the entropy of the system obtained from vibrational frequency, and ZPE is the zero-point energy correction.

The reaction energy barriers (G_b) were calculated according to the following equation:

$$G_b = G_{TS} - G_{IS} \tag{S2}$$

where G_{IS} and G_{TS} are Gibbs free energies of the initial and transition states, respectively.

Figure S1 The front views of the optimized MAPbI₃ surfaces. (a) (110) surface; (b) (220) surface; (c) (310) surface.

Figure S2 AIMD simulations: energies of MAPbI₃ from 300 to 800 K. (a) (110) surface; (b) (220) surface; (c) (310) surface.

Figure S4 The XRD of (220) surface at 600 K

