Facile synthesis of CeO₂-decorated W@Co-MOF heterostructures as a highly active and durable electrocatalyst for overall water splitting

Chang Su^a, Dan Wang^b, Wenchang Wang^{b,c}, Naotoshi Mitsuzaki^d, Zhidong Chen^{*a,b}

^a School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.

^b Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

° Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, Jiangsu,

213032, China.

^d Qualtec Co., Ltd, Osaka, 590-0906, Japan

Corresponding author E-mail : *Z. Chen: <u>zdchen@cczu.edu.cn</u>,

Materials and Reagents

The cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O), Cerium nitrate hexahydrate (Ce(NO₃)₃·6H₂O) and sodium carbonate (NaNO₃) were obtained from Sinopharm Chemical Reagent Co. Ltd. The 2-aminoterephthalic acid (2-NH₂-BDC) and Sodium metatungstate (Na₆W₁₂O₃₉·xH₂O) were purchased from Sigma-Aldrich Co. ltd. The potassium hydroxide (KOH) and N,N dimethylformamide (DMF) were purchased from Shanghai Maclean Biochemical Technology Co., ltd. Besides, ultrapure water (18.2 M Ω) was utilized throughout the whole experiment. The purity of all reagents more than 99%.

Materials characterization

The morphologies and microstructures of the prepared products were tested by scanning electron microscope (SEM, JSM-6360LA, Japan) and transmission electron microscopy (TEM, JEM-2010, Japan). The X-ray diffraction (XRD) was used to identify the crystal phases of products on the Max-2000 (Rigaku Co., Ltd., Japan) and X-ray photoelectron spectroscopy (XPS) can be used to analyze the elemental chemical states of the catalyst materials on the AXIS-Ultra DLD (Shimazu, Japan). The surface pore size adsorption instrument was used to calculate the specific surface area and pore size distribution of the material.

Fig. S1. The SEM images of Co-MOF/NF.

Fig. S2. XPS full spectrum image of CeO₂/W@Co-MOF/NF

Fig. S3. CV curves of various electrodes in the potential window from 0.05 to 0.15 V (vs. RHE) at 1, 2, 3, 4, 5 and 6 mV s⁻¹: (A) Co-MOF/NF, (B) W@Co-MOF/NF, (C) CeO₂/W@Co-MOF/NF and (D) CeO₂/NF.

Fig. S4. Double-layer capacitances (C_{dl}) of the four samples derived from the cyclic voltammograms.

Catalyst	η_{10}/mV	Tafel slope/ mV dec ⁻¹	Electrolyte	Reference
CeO ₂ /W@Co-MOF/NF	239	29.39	1М КОН	This work
Ce/Cu-MOF/GO	386	98.1	1M KOH	1
Co/CoS2@NC	349	237.8	1M KOH	2
Co/CoP@HOMC	260	151	1M KOH	3
Hollow CoS ₂ –MoS ₂	266	104	1М КОН	4
FeCo-P	240	38.24	1М КОН	5
Fe-Co-Ni MOF	254	51.3	1М КОН	6
$(Ni_2Co_1)_{0.925}Fe_{0.075}$ -MOF	257	41.3	1М КОН	7
Co-BPDC/Co-BDC-3	335	72.1	1М КОН	8
Co-Ni@HPA-MOF	320	58	1M KOH	9
BaTiO ₃ @MOF-Fe/Co	247	38.4	1M KOH	10

Table S1. Comparison of OER activity at 10 mA cm⁻² and stability of various MOF-based catalysts.

Catalyst	η_{10}/mV	Tafel slope/ mV dec ⁻¹	Electrolyte	Reference
CeO ₂ /W@Co-MOF/NF	87	32.25	1М КОН	This work
Co-Fe-P/CeO ₂	320	69.7	1M KOH	11
Co/CoS2@NC	188	54.9	1М КОН	2
Co/CoP@HOMC	120	78	1М КОН	3
FeCo-P	131	89.9	1М КОН	5
NiCo-MOF-P	195	105	1М КОН	12
MXene@Ce-MOF	220	149.9	1M KOH	13
Fe-MOF@MoS ₂	118	68	1M KOH	14

Table S2. Comparison of HER activity at 10 mA cm⁻² and stability of various Co-based MOFs catalysts.

Catalyst	Volatage/	Flootpolyto	Deference	
Catalyst	V	Electrolyte	Kelerence	
CeO ₂ /W@Co-MOF/NF	1.54	1М КОН	This work	
NiFe-MOF-5	1.57	1М КОН	15	
Fe-Co-Ni-MOF	1.60	1M KOH	6	
FeCo-P	1.47	1M KOH	16	
CoNiP/NF	1.62	1M KOH	17	
FeCoMnNi-MOF-74/NF	1.62	1M KOH	18	
Co,Fe-MOF-74/Co/CC	1.65	1М КОН	19	

 Table S3. Comparison of overall water splitting at 10 mA cm⁻² and stability of various Co-based MOFs catalysts.

Notes and references

1. Y. Chen, N. Huang and Y. Liang, *Ionics*, 2021, 27, 4347-4360.

2. G. Gao, B. Fang, Z. Ding, W. Dong, Y.-X. Li, X. L. Wang and Y.-F. Yao, *International Journal of Hydrogen Energy*, 2023, **48**, 1831-1841.

3. W. Li, J. Liu, P. Guo, H. Li, B. Fei, Y. Guo, H. Pan, D. Sun, F. Fang and R. Wu, *Advanced Energy Materials*, 2021, **11**.

4. Y. Li, W. Wang, B. Huang, Z. Mao, R. Wang, B. He, Y. Gong and H. Wang, *Journal of Energy Chemistry*, 2021, **57**, 99-108.

5. H. Jiang, Z. Zhao, G. Li, M. Wang, P. Chen, X. Liu, X. Tu, Y. Hu, Z. Shen and Y. Wu, *Advanced Science*, 2023, **11**.

6. F. Shahbazi Farahani, M. S. Rahmanifar, A. Noori, M. F. El-Kady, N. Hassani, M. Neek-Amal, R. B. Kaner and M. F. Mousavi, *Journal of the American Chemical Society*, 2022, **144**, 3411-3428.

7. Q. Qian, Y. Li, Y. Liu, L. Yu and G. Zhang, Adv Mater, 2019, 31, e1901139.

8. Q. Zha, F. Yuan, G. Qin and Y. Ni, *Inorg Chem*, 2020, 59, 1295-1305.

9. M. Lu, Y. Li, P. He, J. Cong, D. Chen, J. Wang, Y. Wu, H. Xu, J. Gao and J. Yao, *Journal of Solid State Chemistry*, 2019, **272**, 32-37.

 S. Wang, Q. Li, S. Sun, K. Ge, Y. Zhao, K. Yang, Z. Zhang, J. Cao, J. Lu, Y. Yang, Y. Zhang, M. Pan, Z. Lin and L. Zhu, *Journal of Materials Chemistry A*, 2022, 10, 5350-5360.

11. Y. Hu, F. Li, Y. Long, H. Yang, L. Gao, X. Long, H. Hu, N. Xu, J. Jin and J. Ma, *Journal of Materials Chemistry A*, 2018, **6**, 10433-10440.

12. M. M. Rajpure, H. A. Bandal, H. S. Jadhav and H. Kim, *Journal of Electroanalytical Chemistry*, 2022, **923**, 116825.

13. S. Li, H. Chai, L. Zhang, Y. Xu, Y. Jiao and J. Chen, *Journal of Colloid and Interface Science*, 2023, **642**, 235-245.

14. R. Velayutham, C. J. Raj, H. M. Jang, W. J. Cho, K. Palanisamy, C. Kaya and B. C. Kim, *Materials Today Nano*, 2023, **24**.

15. Q. Mou, Z. Xu, G. Wang, E. Li, J. Liu, P. Zhao, X. Liu, H. Li and G. Cheng, *Inorganic Chemistry Frontiers*, 2021, **8**, 2889-2899.

16. D. Ji, S. Peng, L. Fan, L. Li, X. Qin and S. Ramakrishna, *Journal of Materials Chemistry A*, 2017, **5**, 23898-23908.

17. H. Liu, R. Huang, W. Chen, Y. Zhang, M. Wang, Y. Hu, Y. Zhou and Y. Song, *Applied Surface Science*, 2021, **569**.

18. M. Zhang, W. Xu, T. Li, H. Zhu and Y. Zheng, Inorganic Chemistry, 2020, 59, 15467-15477.

19. Q. Zha, M. Li, Z. Liu and Y. Ni, ACS Sustainable Chemistry & Engineering, 2020, 8, 12025-12035.