Electronic Supporting Information: Rational Design of Two-Dimensional High-Temperature Ferromagnet from HCP Cobalt

Bo-Jing Wang^{*},¹ Yi-Na Hou^{*},¹ Chen-Dong Jin,¹ Hu Zhang,¹ Jiang-Long Wang,¹

Peng-Lai Gong,¹ Ru-Qian Lian,¹ Xing-Qiang Shi,¹ and Rui-Ning Wang^{$\dagger 1$}

¹Key Laboratory of Optic-Electronic Information and Materials of Hebei Province,

National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Research Center of the Basic Discipline for Computational Physics,

Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, People's Republic of China

(Dated: July 12, 2024)

^{*} These authors contributed equally to this work.

[†] To whom correspondence should be addressed: rnwang@hbu.edu.cn.

FIG. S1: (Color online). (a) The lattice constants (\vec{a} and \vec{c}) and (b) the magnetic moment (μ_B) per Co atom as a function of U_{eff} for HCP Co.

FIG. S2: (Color online). The spin/atom-projected band structures of two-dimensional Co_2I_2 at the PBE+U ($U_{eff}=3.2 \text{ eV}$) level of theory. (a) Co for spin up; (b) Co for spin down; (c) I for spin up; (d) I for spin down.

FIG. S3: (Color online). The magnetocrystalline anisotropy energy per Co atom (E_{MAE} , in meV) as a function of the magnetization direction in the XY (a-d) and XZ (e-h) plane at the PBE+U (U_{eff} =3.2 eV) level of theory, respectively. The energy of the configuration with the magnetic moment pointing to (001) for the XY plane or (100) for the XZ plane is set as 0 eV. (a, e) Co₂F₂, (b, f) Co₂Cl₂, (c, g) Co₂Br₂ and (d, h) Co₂I₂.

FIG. S4: (Color online). The magnetocrystalline anisotropy energy per Co atom ($E_{MAE} = E_{(001)} - E_{(100)}$, in meV) as a function of the effective on-site Coulomb interaction (U_{eff}) for Co₂Cl₂ at the PBE+U level of theory.

FIG. S5: (Color online). The orbital-projected density of states of Co_2I_2 as a function of the in-plane biaxial strain. (a) -2%, (b) -4%, (c) -6% and (d) -8%.

FIG. S6: (Color online). Phonon spectra of free-standing (a) Co_3F_2 and (b) Co_4F_2 calculated at the PBE level of theory.

FIG. S7: (Color online). Phonon spectra of free-standing $Co_{2n}Cl_2$ calculated at the PBE level of theory. (a) Co_4Cl_2 , (b) Co_5Cl_2 and (c) Co_6Cl_2 .

FIG. S8: (Color online). Phonon spectra of free-standing (a) Co_4Br_2 and (b) Co_4I_2 calculated at the PBE level of theory.