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1. Experimental Procedures 

1.1 Peptide synthesis 

The peptides were synthesized on a Wang-linker functionalized polystyrene resin using standard Fmoc chemistry. 
The crude peptides were purified by semi-preparative RP-HPLC. The lyophilized peptides were characterized by 
analytical RP-HPLC and MALDI-ToF or ESI MS (Table S1). 

 

Table S1. Peptide characterization by RP-HPLC and MS. 

a Detection at 220 nm; b MALDI-ToF MS; c ESI-MS 

 

1.2 Planar lipid bilayer pore formation experiments 

The ability of the peptides to disrupt a bilayer was then investigated by measuring the amount of current that could 
flow across the bilayer. Planar lipid bilayer recordings were performed in a custom Teflon cell equipped with two 1 
mL compartments separated by a 20 m thick Teflon film (Goodfellow) with an ~100 m diameter aperture (Figure 
S1). A hanging drop of hexadecane in n-pentane (5 μL, 10%, v/v) was touched on each side of the Teflon sheet 
containing an aperture and allowed to dry for 1 min. The cell was placed into a Faraday cage, and Ag/AgCl electrodes 
(Warner) connected to a patch clamp amplifier (Axopatch 200B, Molecular Devices) were suspended either side of 
the Teflon sheet. KCl/MOPS buffer (600 μL) was added to the well on each side of the aperture. POPC lipid (1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) (approximately 8 μL, 5 μg μL–1 in n-pentane) was added to each 
side of the well and left for ~5 min to allow the pentane to evaporate.  The buffer solution on both sides of the Teflon 
sheet was aspirated and dispensed using a Hamilton syringe to paint a phospholipid bilayer across the aperture. A 
±1 mV pulse was applied at 1333 Hz to determine when a bilayer was obtained (capacitance >40 pF).  

Peptide Sequence HPLC (tR min)a Purity (%) [M+H]+ b 

1 FFFLSRIF 3.4 94 1076.63 

2 GSGTGSGT 0.8 99 623.30 c 

3 CFTYFFRV 3.0 99 1082.71 

4 VCVYWWRT 3.7 95 1112.76 

5 FGYVLIRI 3.1 97 980.79 

6 LSFMRFFF 3.4 99 1094.66 

7 SAFWWFRF 3.5 99 1146.83 

8 HGLFWWRF 3.1 99 1148.84 

9 GIALKIVW 3.9 95 899.58 

10 YCVLRLPF 3.2 97 1010.76 

11 FFMSIRFF 3.4 98 1094.79 

12 FFIMRFFS 3.4 99 1094.55 

13 FFRISMFF 3.4 99 1094.63 
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Supplemental Figure S1 Diagram of custom cell for planar lipid bilayer experiments. The cell consists of two mirror 
image Teflon blocks. Each block has a well bored into it, with a perpendicular channel connecting the two wells. Each well 
has two mitred channels at a 45° to allow for ease of access to the buffered well during experimentation. The blocks were 
held together using metal brackets. A tight seal was ensured by using silicon glue.  

 

The membrane was characterized with successive 2 s sweeps under an applied potential ranging from +100 to 
−100 mV (Figure S2). The membrane seal was deemed acceptable if the range of current flow across the membrane 
measured <1 pA. Under an applied voltage (+10 mV), a solution of peptide (10 μL of a 50 μM solution, final 
concentration ∼0.8 μM) was added to the trans well of a membrane-containing system. 

 

 

 

Supplemental Figure S2 Characterization of POPC Membranes. In order to interrogate the quality of the formed POPC 
bilayer a characterization is carried out by means of an IV sweep between the range -100 mV and +100 mV in 10 mV 
increments over 2 second sweeps. This protocol is repeated six times, and a mean average is calculated of the current at 
each value of voltage. A membrane with current flow deviation <1.5 pA is considered a pass and used for experiments, as 
demonstrated (left). In the case that there is current flow deviation >1.5 pA (as on right) this is considered a pass, and the 
membrane is zapped and reformed and the process repeated. 
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Supplemental Figure S3 Evidence of bilayer formation by insertion of a-HL transmembrane protein nanopore. 
Addition of -HL (~0.2 μM) to a stable POPC phospholipid bilayer to isolate a single transmembrane channel (left). Current 
trace of channel insertion added to the ground well under a positive applied potential difference (+100 mV) in buffer (1 M 
KCl, 10 mM MOPS, pH 7.4) (middle). Current traces acquired at 2 kHz lowpass Bessel filter and x 50 output gain. Current 
voltage relationship of obtained -HL single transmembrane channel stepwise from -100 mV to +100 mV (right). 

 

 

Supplemental Figure S4 Positive control peptide 1 FFFLSRIF. Current traces of membrane disruption with peptide 1 
(FFFLSRIF) using 1 KCl, 10 mM MOPS, pH 7.4. Current traces acquired at 2 kHz lowpass Bessel filter and x 50 output gain. 
Membrane formed using DPhPC. 
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Supplemental Figure S5 Peptide 4 channel forming behavior. Current traces of membrane disruption with peptide 4 
(VCVYWWRT) using 1 M KCl,10 mM MOPS, pH 7.4. Current traces acquired at 2 kHz lowpass Bessel filter and x 50 output 
gain. Traces visualized with lowpass filter type (Gaussian) with 750 Hz cut-off. Varying insertions observed at +10 mV (top), 
+30 mV (middle) and +50 mV (bottom) eventually leading to the membrane bursting. 

 

1.3 FFMSRIFF, experimental pore-formation with alternative ions and phospholipids 

Membrane disruption sustained with variation of buffer components from KCl to NaCl and CsCl but stability of the 
channels was greatly decreased (Figure S6). Channel-like behavior was preserved with alternative phospholipid 1,2-
diphytanoyl-sn-glycero-3-phosphocholine (DPhPC), a more prevalent candidate for single-channel studies as a result 
of increased stability over POPC1 (Figure S7).  
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Supplemental Figure S6 Membrane disruption observed with octapeptide 11 FFMSIRFF under varying buffer 
concentration. Current traces of membrane disruption with peptide 11 (FFMSRIFF) using 1 M NaCl (top) and 1M CsCl 
(bottom) with 10 mM MOPS, pH 7.4. Current traces acquired at 2 kHz lowpass Bessel filter and x 50 output gain. 

 

 

Supplemental Figure S7 Membrane disruption observed with octapeptide 11 FFMSIRFF with DPhPC lipid. Current 
traces of membrane disruption with peptide 11 (FFMSRIFF) using 1 KCl, 10 mM MOPS, pH 7.4. Current traces acquired at 
2 kHz lowpass Bessel filter and x 50 output gain. Membrane formed using DPhPC. 
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Supplemental Figure S8 Further examples of channel insertion with peptide 11 FFMSRIFF. Current traces of 
membrane disruption with peptide 11 (FFMSRIFF) using 1 M KCl,10 mM MOPS, pH 7.4. Current traces acquired at 2 kHz 
lowpass Bessel filter and x 50 output gain. Traces visualized with lowpass filter type (Gaussian) with 750 Hz cut-off. 
Examples of eight experiments shown each demonstrating channel forming behavior and membrane disruption. 

 

 

Supplementary figure S9 Additional data with negative control peptide 2. Current traces of stable membrane over 
multiple additions with negative control peptide 2 (GSGTGSGT) using 1 M KCl,10 mM MOPS, pH 7.4. Current traces acquired 
at 2 kHz lowpass Bessel filter and x 50 output gain. Traces visualised with lowpass filter type (Gaussian) with 750 Hz cuttoff.  

 

Supplementary figure S10 Additional data with negative control peptide 2 and then peptide 11. Current traces of 
stable membrane over multiple additions with negative control peptide 2 (GSGTGSGT) which then demonstrate sporadic 
channel formation following the addition of peptide 11 (FFMSRIFF) using 1 M KCl,10 mM MOPS, pH 7.4. Current traces 
acquired at 2 kHz lowpass Bessel filter and x 50 output gain. Traces visualised with lowpass filter type (Gaussian) with 750 
Hz cuttoff.  
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Supplementary figure S11 Additional data with negative control peptide 3. Current traces of stable membrane over 
multiple additions with negative control peptide 3 (CFTYFFRV) using 1 M KCl,10 mM MOPS, pH 7.4. Current traces acquired 
at 2 kHz lowpass Bessel filter and x 50 output gain. Traces visualised with lowpass filter type (Gaussian) with 750 Hz cuttoff.  

 

 

 

 

 

Supplementary figure S12 Additional data with negative control peptide 3 then peptide 11. Current traces of stable 
membrane over multiple additions with negative control peptide 3 (CFTYFFRV) which then demonstrate sporadic channel 
formation following the addition of peptide 11 (FFMSRIFF) using 1 M KCl,10 mM MOPS, pH 7.4. Current traces acquired at 
2 kHz lowpass Bessel filter and x 50 output gain. Traces visualised with lowpass filter type (Gaussian) with 750 Hz cuttoff.  
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Supplementary figure S13 Inspection of channel insertion conductance with peptide 11. Residual ion current 
histogram distributions of twelve examples of channels observed from the addition of peptide 11 at +10 mV in 1 M KCl, 10 
mM MOPS, pH 7.4. Closed channel (blue) and open channel (grey) current distributions interrogated with normal 
distributions determined by analysis with Solver plugin.  
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2. Computational Simulations 

2.1 Coarse-grained molecular dynamics  

The MARTINI forcefield (version 2.1) parameters for coarse-grained (CG) peptides, phospholipids, water & ions 
are used with a predefined α-helical secondary peptide structure2, 3. The peptide atoms are mapped one-to-four in 
corresponding heavy atoms-to-beads, water beads represent four water molecules for the purpose of computational 
efficiency and the ion beads represent one ion. This causes an inevitable loss of detail but leaves a much more 
computationally efficient method of studying biological systems as the atom properties (polarity, molecular shape, 
bond lengths etc.) are implied via the coarse-grained representation. However, water does not enter pores in the 
simulations performed herein due to the coarse-grained model being too bulky to allow water to enter. Another 
consequence of this is that many of our results are sinking rafts as barrel-stave is only accessible if a single peptide 
can span the bilayer. 

Each 12.5×12.5×17.0 nm NPT box was setup with a bilayer of 360 POPC and 90 POPS phospholipids in a bilayer 
using INSANE4. 80 zwitterionic peptides were inserted within 2 nm of the top side of the equilibrated bilayer with at 
least 0.3 nm between their centers of geometry (COG) with the box neutralized with Na/Cl ions and solvated with 
MARTINI water. The temperature and pressure were kept constant at 323 K (higher temperature used help to 
perturb the bilayer) 5 & 1 bar respectively via a v-rescale thermostat & Berendsen semiisotropic barostat6, 7. Bond 
lengths between backbone and side-chain for peptides I, V & Y as well as within aromatic side chains were 
constrained via the LINCS algorithm.8 The boxes were minimized using the steepest descent integrator and steered 
molecular dynamics (SMD) was used to pull peptides. PME electrostatics with an order of 4 and Fourier spacing of 
0.12 nm was used for computing long-range electrostatic interactions (Figure S14). Due to the relationship between 
the diffusion constants of the MARTINI coarse-grained and atomistic simulations, the effective simulation time is 4 
times greater than the formal simulation time. Herein we refer to the effective simulation time and not the formal 
time. 

 

Supplemental Figure S14 Molecular dynamics electrostatics methods and their effect on peptide-bilayer binding. 
A segment of melittin (ALISWIKR) was added to POPC/POPS bilayer simulations using different electrostatic evaluation 
methods (PME, shift & reaction field). The P/L* ratios for the short-ranged methods (shift & reaction field) are around 35 
while PME allows far more peptides (∼ 60) to adsorb onto the surface while increasing APL. 

 

2.2 Steered coarse-grained molecular dynamics  

Herein we will use a combination of SMD and CGMD for fast and accurate evaluation of peptides that cause 
increased perpendicular pressure on phospholipid bilayers and increased APL9. Peptides are placed within 2 nm of 
the bilayer and pulled along the Z-axis to allow them to quickly aggregate on the surface. SMD was used to pull 
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peptides (via umbrella sampling) in the Z-dimension towards the bilayer at a constant rate of 0.1 kJmol−1nm−2 for 400 
ns, followed by relaxation for 400 ns and finally CpHMD for up to 2,000 ns. This technique has previously been used 
to decrease the equilibration portion of simulations where peptides find their way to the surface of a bilayer5, 10-13. 
Following this we relax the simulation by removing the pulling forces, enabling peptides to dissociate.  

 

2.2.1 SMD repeatability 

With steered molecular dynamics (SMD) there is known to be a lower degree of reproducibility compared with 
equilibration, therefore when fitting hyperparameters or for any kind of measurement of parameter usefulness we 
take the averages of 3 runs and use the average of 2 runs for the active learning algorithm. We do find however that 
since we apply only a very weak force constant our results are quite repeatable (Figure S15). 

 

 

Supplemental Figure S15 SMD repeatability. SMD results are highly reproducible between the three runs (blue, orange, 
red) of the random set of 200 systems in both the pulling (A) and relaxation stages (B). 

 

2.3 Constant pH molecular dynamics  

To capture a wider range of transitions than are constricted by probability in the original CpHMD algorithm 
proposed by Radak et al. we modified this algorithm, such that the weighted choice of which titratable residue to 
titrate (λ → λ′) is determined by the distance from the bilayer center rather than the theoretical pKa. Temperature 
(311 K) and semiisotropic pressure (1.01325 bar) were coupled using Langevin dynamics 14, 15 and a modified Nose-
Hoover Langevin piston.16 The electrostatic interactions where evaluated using particle-mesh Ewald summation and 
non-bonded LJ terms by a cutoff at 1.2 nm with a shifted modified beginning at 1.0 nm. Each simulation was run at 
pH 7.0 for up to 2,000 ns or until APL had converged which was made up of 10,000 iterations of 2,000 time steps of 
25 fs, at each CGMD iteration a non-equilibrium switch between two titratable states is proposed and run for 200 
steps.  

𝑊𝑒𝑖𝑔ℎ𝑡𝑠 =
1

||𝑟𝑒𝑠𝑧 − 𝑏𝑖𝑙𝑎𝑦𝑒𝑟𝑧||
∶ 𝑟𝑒𝑠 ∊ 𝑡𝑖𝑡𝑟𝑎𝑡𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 
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2.4 Pore-formation via CpHMD 

Very few of the SMD+CGMD simulations predicted pore-forming behavior. Hence, CpHMD was used to further 
simulate the systems starting from the final frame of each CGMD simulation. The CpHMD simulation were found to 
act as a discriminator of pore-forming behavior; it progresses the formation of pores for some systems while for 
others not only do pores not form, but peptides also tend to dissociate slightly from the bilayer if they are non-pore-
forming (Figure S16 C, D). 

 

 

Supplemental Figure S16 Active learning vs random screening with CpHMD discriminator. a,b) Bold lines show the 
mean APL for the three stages, pulling (blue), relaxing (red), CpHMD (yellow) of peptide-bilayer simulation while the filled 
area shows the range of the random set of octapeptides (a) and machine learning selected (b). The black line is a selected 
peptide (a: CIIWKWFT, b: FGYVLIRI) from each set demonstrating how CpHMD can significantly alter the result. c,d) 
Combining APL and Rg can help to identify PFPs, every octapeptide in the top right corner (d) forms pores or carpets 
membranes when CpHMD is performed, comparison of (c) & (d) shows that CpHMD is much better at discriminating 
between pore-forming and inactive octapeptides. The anomalous result of where an octapeptide (FFMSIRFF) has a very 
low (< 60) APL yet is pore-forming demonstrates a short coming of the APL descriptor. 
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2.5 APL as a metric  

We scored the ability of each peptide to form transmembrane pores in the CpHMD simulations by assessing the 
bilayer area-per-lipid (APL). The use APL is based on work by Huang17 who proposed that transmembrane peptide 
pores assemble when the peptide-to-lipid ratio (P/L) reaches a critical point (P/L*). According to this model, thinning 
of the membrane increases in proportion to the P/L ratio, but remains constant above the critical ratio when pores 
form. Since membrane thinning increases APL, we anticipated that the APL should provide a measure of the pore-
forming ability of a peptide. Hence, we used the APL to score the ability of a peptide to form transmembrane pores. 
Additional parameters such as radius of gyration (Rg, Figure S17), solvent accessible surface area (SASA, Figure S19) 
and aggregation propensity (AP, Figure S20). 

 

Supplemental Figure S17 APL and Rg predictiveness of pore-forming. Pore-forming ability is strongly correlated with 
APL but not Rg, however the Rg measurement can be useful in determining the nature of the pore(s) formed. 

 

 

Supplemental Figure S18 Validation against PFPs found in nature. Left) Melittin binds with the bilayer surface and 
forms a pore. Right) LL-37 binds with the bilayer surface but does not enter the bilayer. Both simulations have very 
similar APL profiles, but manual inspection shows the LL-37 does not form pores while Melittin does. 
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We also compared with APL as a metric with solvent accessible surface area (SASA) of the bilayer. Both of these 
metrics are highly correlated and seem to be able to provide some indication of pore-formation though neither are 
definitive (Figure S19). 

 

Supplemental Figure S19 Comparison of using APL and SASA as measurements of bilayer disruption. While APL is 
only indicative of pore-forming, the SASA measurement is equally only indicative of pore-formation. This is shown by the 
red (non-pore-forming) and green (pore-forming) peptide-bilayer system measurements having no clear cut-off point using 
either method. 

 

We found that the aggregation propensity (AP) of peptides was weakly correlated with the APL score (Figure S20). 
This result is biased by the starting positions of the peptides being close to the bilayer and close to each other. 

 

 

Supplemental Figure S20 Area per lipid (APL) vs aggregation propensity (AP). 115 octapeptides randomly selected 
from the machine learning, random and validation sets. The potential for these peptides to aggregate in water was 
simulated using the method described by Frederix et al.18 using both helical (H) and extended (E) secondary structure. The 
aggregation score (AP) was used to quantify the degree of aggregation experienced by each system. A) We find that AP 
scores for H/E secondary structure is highly correlated, B, C) however neither AP scores correlate strongly with APL with 
low r2 scores for a linear trendline. D) This correlation was also compared over the duration of peptide 1 simulations 
showing only a minor increase in AP score compared to a much larger increase in APL. 
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2.6 Phospholipid bilayers vs stands-ins. 

There has been discussion of using model substitutes for phospholipids in peptide-bilayer simulations such as 
cylamine/octanoic acid, octanol/water, octadecanoic acid/octadecylamine19. This is done often to decrease 
equilibration time as the transition from out of the bilayer to inside of it crosses over a small transition so that the 
proportions of what’s on each side can be realized in less time. However, we find this is inappropriate for searching 
for PFPs as these, despite being simple peptides, are complex molecules which may be unable to pass the transition 
barrier formed by the head groups. 

 

3. Machine learning / Artificial intelligence 

3.1 Active learning cycle 

We applied our active-learning cycle with three different model combinations (Table S1). Each iteration consists 
of scanning the entire octapeptide (208) dataset using the Judred parameters via the cheap model, this is done by 
loading in each “chunk” of the dataset (2,560,000 rows) and selecting the peptide with highest predicted APL (total 
of 10,000 peptides). For these 10,000 peptides the higher resolution parameters are generated and a second APL 
prediction is made via the expensive model. From here either the top 10 are taken or a Monte Carlo (MC) function is 
applied to the APL predictions by multiplying all values by a random number between 0 and 1 from a uniform 
distribution.  

 

MC  =  APL  ×  U(0,1) 

This has the effect of randomly dropping out top performers to increase diversity while acting on a large enough 
set so as not to promote any low-to-mid performers to the top of the list. This helps to escape local maxima. These 
top 10 are simulated and the resulting mean APL measurement for each system (run in duplicate) are used to retrain 
both models and make the next iteration of prediction. The combinations of machine learning algorithms tested for 
the Judred dataset screening and higher resolution dataset are given in Table S2. 

 

Table S2. Machine learning model combinations. Three combinations of machine learning models used in this 
study and whether a MC step was used. 

 

Model Cheap model Expensive model Monte Carlo 

A ETR ETR X 

B ETR ETR ✓ 

C XGB ETR ✓ 

 

Many high APL octapeptides were discovered. However, without the Monte Carlo function, model A over-selected 
for octapeptides containing Tyr, with 66/70 containing at least one Tyr residue and 29/70 containing a YYYY motif. 
This is due to highly localized optimization and not desirable as we aim to discover PFPs with a diverse range of 
sequences to better understand sequence-dependent activity. 
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3.2 Machine learning peptide descriptors 

 

Given the previously reported issues with generating large datasets of descriptors for the scales of searching 
employed herein (octapeptides, 208) using methods that require generating complex molecular representations 
(Mordred20, PyBioMed21, PyMolSAR22 & PaDELPy23, 24), we utilize a two-stage strategy that allows the entire 
octapeptide (208) space to be examined at a lower resolution (Judred parameters) and to then re-examine with on-
the-fly generated higher resolution parameters (Table S3). This method has previously been successfully deployed 
in iteratively learning which peptides will self-assemble in peptide space up to hexapeptides25. To generate the high-
resolution dataset, the five molecular descriptor (Judred, Mordred, PyBioMed, PyMolSAR, PaDELPy) programs were 
used to generate exhaustive (1330) parameters for 200 randomly selected octapeptides and reduced via 5-CV 
reductive feature elimination to 20 remaining features. 

Enormous amounts of disk and RAM space are saved by implicit indexing based on position rather than storing 
peptide sequences, or even explicit indexes. This is achieved by Judred25 preparing the dataset in an ordered fashion 
such that any peptide sequence can be calculated by knowing its position in the dataset and the length of the peptide. 
Since the entire dataset is screened on each iteration this is a feasible scheme that is employed throughout.  

The Judred parameters were generated for each peptide with the addition of the isoelectric point (pI) using CuPY26 
and Apache Parquet27, with a chunk size of 2,560,000, due to the trade-off in calculation speed and RAM size 
requirements. The source code which has been made available at https://github.com/avanteijlingen/Judred.  

 

Table S3. Machine learning model metrics comparison. RMSE and r2 scores for various machine learning 
algorithms evaluated for use within machine learning. Each model was trained on 200 randomly selected 
octapeptides and their associated APL scores and validated against a previously unseen validation set of 72 systems 
with above average APL. Both the ability to predict APL from Judred and Mordred parameters are measured and 
considered. 

 
RMSE r2 

 
Train High APL (Validation) Train High APL (Validation) 

Judred 

Extra trees regressor 1.25 1.93 0.89 0.51 

Gradient boosted decision trees 0.57 1.82 0.98 0.57 

Random Forest 1.63 2.45 0.82 0.22 

Decision tree regressor 1.3 2.13 0.89 0.41 

Linear SVM 3.36 4.74 0.24 -1.92 

Linear regressor 2.19 2.74 0.68 0.03 

Gaussian process regressor 1.23 2.48 0.9 0.21 

Elastic Net 3.29 4.39 0.27 -1.5 

NuSVMrbf 4.06 3.37 -0.11 -0.48 

SVMrbf 2.36 3.13 0.62 -0.27 

SVMpoly 2.23 2.9 0.66 -0.09 

Ridge regressor 2.41 2.94 0.61 -0.12 

Multi-layer perceptron 1.52 2.1 0.84 0.43 

Mordred 
 

Train High APL (Validation) Train High APL (Validation) 

Extra trees regressor 0.97 1.74 0.94 0.61 

Gradient boosted decision trees 0.81 1.88 0.96 0.54 

https://github.com/avanteijlingen/Judred
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Random Forest 1.13 1.95 0.91 0.51 

Decision tree regressor 1.11 2.06 0.92 0.45 

LinearSVM 2.21 2.64 0.67 0.09 

Linear regressor 1.85 2.78 0.77 0 

Gaussian process regressor 0.46 3.38 0.99 -0.48 

Elastic Net 2.62 3.5 0.54 -0.59 

NuSVMrbf 4.12 3.56 -0.15 -0.64 

SVMrbf 3.2 3.68 0.31 -0.76 

SVMpoly 2.97 3.77 0.4 -0.85 

Ridge regressor 3.42 4.06 0.21 -1.14 

Multi-layer perceptron 2.52 4.4 0.57 -1.51 

Mean of predicted values 
 

Train High APL (Validation) Train High APL (Validation) 

Extra trees regressor 1.07 1.75 0.92 0.6 

Gradient boosted decision trees 0.68 1.83 0.97 0.56 

Random Forest 1.32 2.09 0.88 0.43 

Decision tree regressor 1.05 1.87 0.93 0.54 

LinearSVM 2.52 3.49 0.57 -0.58 

Linear regressor 1.94 2.68 0.75 0.07 

Gaussian process regressor 0.76 2.49 0.96 0.2 

Elastic Net 2.76 3.8 0.48 -0.87 

NuSVMrbf 4.08 3.46 -0.12 -0.55 

SVMrbf 2.65 3.27 0.53 -0.39 

SVMpoly 2.43 3.14 0.6 -0.28 

Ridge regressor 2.71 3.33 0.51 -0.44 

Multi-layer perceptron 1.74 2.94 0.8 -0.12 

 

 

3.3 Machine learning results 

 

Table S4 and S5 contain the results from the machine learning algorithms (Models A-C), Figures S16 &S17 contain 
top-down snapshots of ML selected bilayers at the end of their CpHMD simulations. 

 

Table S4. Pore-forming peptides found via active learning. The 71 PFPs found with the active learning and the 
model combination that found them, their disruption mechanism and APL and Rg values. Short peptides are not able 
to form pores via toroidal or barrel-stave mechanisms as this requires that the peptides enter one-by-one and that 
they are able to individually span the bilayer. From the 160 position specific residues, many from the top 20 identified 
occur frequently. 

 
APL 
(MD) 

APL 
(CpHMD) 

Rg Model Mechanism Top residues Z/AA 
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FFMSIRFF 71.3 58.3 37.8 B Carpet F1 0.125 

QWCIKSKG 71.5 64.5 31.6 C Sinking Raft K5 0.25 

FSVLFFRW 73.4 66.3 40.7 B Sinking Raft F1, F6, R7 0.125 

YPKMFAFF 72.2 67.4 30.8 B Sinking Raft - 0.125 

IKKFYYYY 77.9 69.1 35.9 A Sinking Raft - 0.25 

GMFFWGKY 71.6 69.3 31.2 B Sinking Raft - 0.125 

CLWPKQIL 76.3 69.4 29.7 C Sinking Raft K5, L8 0.125 

KWPFYYRY 72.8 69.5 44.9 A Sinking Raft R7 0.25 

LIKFYYMR 73.1 69.7 48.1 B Sinking Raft - 0.25 

WCWFSLRW 74.6 69.8 45.9 B Sinking Raft R7 0.125 

YYMVKLYI 74.2 70.1 37.1 C Sinking Raft V4, K5 0.125 

YYMVFMRM 72.0 70.6 44.1 B Sinking Raft V4, R7 0.125 

FWYGFGKF 76.4 70.7 32.6 B Sinking Raft F1 0.125 

VFHKIVTL 75.1 70.9 39.9 C Sinking Raft L8 0.125 

MYLMMFRY 75.1 71.1 37.8 B Sinking Raft L3, F6, R7 0.125 

QWVVKILV 73.8 71.3 45.4 C Sinking Raft V4, K5 0.125 

VMMRYYMF 73.8 71.6 38.9 B Sinking Raft - 0.125 

LRKCWFFC 74.5 71.8 47.2 B Sinking Raft F6 0.25 

MKKFYYYY 74.5 71.9 33.5 A Sinking Raft - 0.25 

LHFVKTVL 76.7 72 33 C Sinking Raft V4, K5, L8 0.125 

YGIVRFIL 77.0 72.1 42.3 C Sinking Raft G2, V4, F6, L8 0.125 

MMMFYYRV 74.5 72.1 42.5 B Sinking Raft R7 0.125 

PYKCFPFG 73.3 72.2 32.9 B Sinking Raft - 0.125 

YCAFFLRY 72.8 72.2 44.2 B Sinking Raft R7 0.125 

HGLFWWRF 71.8 72.5 46.4 B Sinking Raft G2, L3, R7 0.125 

QFLMKCLL 77.4 72.7 30.5 C Sinking Raft L3, K5, L8 0.125 

PKFYWRYY 75.1 72.8 40.4 A Sinking Raft - 0.25 

CPWFYMKY 72.9 72.8 37.5 B Sinking Raft - 0.125 

GIALKIVW 73.5 72.9 34.7 C Sinking Raft K5 0.125 

QIWMVIKV 74.2 73.1 49.3 C Sinking Raft - 0.125 

FGFGYPKW 75.0 73.2 32.8 B Sinking Raft F1, G2 0.125 

VGGFYFKF 74.5 73.3 40.8 B Sinking Raft G2, F6 0.125 

KPWFYYYR 74.3 73.3 48 A Sinking Raft - 0.25 

SAFWWFRF 74.0 73.4 47.4 B Sinking Raft F6, R7 0.125 

FWAFYAKG 73.8 73.6 44.8 B Sinking Raft F1 0.125 

LHVVKFTL 74.5 73.8 33.9 C Sinking Raft V4, K5, F6, L8 0.125 

MKKALFGT 73.8 73.8 34 B Sinking Raft F6 0.25 

TVLYAKFW 72.2 74 30.9 C Sinking Raft L3 0.125 

FIFMYPRY 75.8 74.1 42.2 B Sinking Raft F1, R7 0.125 

FFPYGWKG 77.8 74.3 41.5 B Sinking Raft F1 0.125 

LFVHKVLT 79.7 74.6 42.5 C Sinking Raft K5 0.125 
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NIFLKLCL 75.9 74.7 33.2 C Sinking Raft K5, L8 0.125 

VCLWYKVY 74.5 74.7 34.4 C Sinking Raft L3 0.125 

YLYYKMLI 76.1 74.8 40.5 C Sinking Raft K5 0.125 

IVTHKVFI 75.2 74.9 31.9 C Sinking Raft K5 0.125 

YFLIIGRV 75.2 74.9 46.3 C Sinking Raft L3, R7 0.125 

THIKFVVI 73.1 75 31.7 C Sinking Raft - 0.125 

ILWPKLIQ 75.9 75 39.8 C Sinking Raft K5 0.125 

LYGGCKKC 71.7 75.4 45.5 C Sinking Raft - 0.25 

CGFIKLIV 75.1 75.6 35.1 C Sinking Raft G2, K5 0.125 

IIFTKHVV 75.4 75.7 40.2 C Sinking Raft K5 0.125 

YFAAFGKW 74.5 75.8 35.6 B Sinking Raft - 0.125 

CKKPGLYL 75.0 76.3 44.5 B Sinking Raft L8 0.25 

HLFVKITV 75.7 76.4 34.8 C Sinking Raft V4, K5 0.125 

LVIKVFTH 78.4 76.4 42.6 C Sinking Raft F6 0.125 

IGFVYIRI 75.2 76.4 43.2 C Sinking Raft G2, V4, R7 0.125 

LMWGRCCA 75.0 76.6 48.3 C Sinking Raft - 0.125 

VCVYWWRT 73.6 76.6 48.5 B Sinking Raft R7 0.125 

GLFGCCRF 76.5 77.1 48.4 C Sinking Raft R7 0.125 

YFCVFFRI 74.5 77.4 45.3 B Sinking Raft V4, F6, R7 0.125 

IGLYIFRV 72.1 77.6 46.9 C Sinking Raft G2, L3, F6, R7 0.125 

GVILIFRY 72.1 78.1 47.9 C Sinking Raft F6, R7 0.125 

IIIWYGKY 77.3 78.5 46.1 C Sinking Raft - 0.125 

GLYIVFRL 76.1 78.5 51.8 C Sinking Raft F6, R7, L8 0.125 

VYGFIIRI 75.1 78.8 47.6 C Sinking Raft R7 0.125 

LCMFMRPI 76.0 78.9 50.6 C Sinking Raft - 0.125 

LSFMRFFF 75.0 79.1 48.3 B Sinking Raft F6 0.125 

YCVLRLPF 77.3 79.3 48 C Sinking Raft - 0.125 

MFIFFSRF 75.6 79.5 46.2 B Sinking Raft R7 0.125 

IGFIRVLY 76.5 80.4 50 C Sinking Raft G2 0.125 

FGYVLIRI 76.0 81 48.6 C Sinking Raft F1, G2, V4, R7 0.125 

 

Table S5 Peptides found to be non-pore forming. The 129 non-PFPs found with the active learning, the model 
combination that found them, and APL and Rg values. Of the 160 positional residues, very few from the top 20 
identified occur. 

 
 APL 

(CpHMD)  

 Rg  Model  Top 

residues  

 Z/AA     APL  

(CpHMD) 

 Rg  Model  Top 

residues  

 Z/AA 

CKKFYYYY 63.2 33.7 A 
 

0.25 PFRYWKYY 67.8 35.2 A 
 

0.25 

GKKFWWIM 63.2 36.2 B 
 

0.25 IVIYKWYG 67.9 34.6 C K5 0.125 

QHPSYYYY 63.2 37.7 A 
 

0 PKWYYFRY 67.9 39.7 A F6, R7 0.25 
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WWGSSKMK 63.9 38 C 
 

0.25 MKRYFYYY 67.9 39.1 A 
 

0.25 

LTKFFFMM 64 36.5 B F6 0.125 WKPFYYRY 68.1 37.1 A R7 0.25 

AAASYYYY 64.3 37.5 A 
 

0 RRFKVLWW 68.1 41.4 C 
 

0.375 

QHNEYYYY 64.3 37.5 A 
 

-0.125 RKKFYYYY 68.2 34 A 
 

0.375 

QHQNYYYY 64.4 37.1 A 
 

0 WPKFYYRY 68.3 46.2 A R7 0.25 

AAAADEMC 64.5 38.1 B 
 

-0.25 PRKFYWYY 68.4 37.9 A 
 

0.25 

QHNNIDWQ 64.6 36.7 B 
 

-0.125 PFKRWYYY 68.5 41.4 A 
 

0.25 

MWAWWYKG 64.7 39.1 B 
 

0.125 RLKHCFCW 68.6 41.6 B F6 0.25 

QHVLHCDT 64.7 26.5 B 
 

-0.125 PKFRWYYY 68.7 38.5 A 
 

0.25 

QHSYYYYY 64.8 33.7 A 
 

0 RRWMCRMV 68.7 53.9 B 
 

0.375 

QHSFGWKW 64.8 37.7 B 
 

0.125 GMFWGYKW 68.7 30.7 B 
 

0.125 

RYKSWGYW 64.8 47.2 A 
 

0.25 PRKFYYYY 68.7 40.6 A 
 

0.25 

WPKYFYRY 64.8 51.4 A R7 0.25 QHRMTYPW 68.9 33.6 B 
 

0.125 

QHSEYYYY 64.9 35.3 A 
 

-0.125 PKPRYWYY 68.9 43.5 A 
 

0.25 

LKKFYYYY 65 37.5 A 
 

0.25 GQLRGWWM 69 41.9 C L3 0.125 

ISTHFWKH 65 37.9 C 
 

0.125 PFKRYYWY 69 41.1 A 
 

0.25 

IWQKCSGK 65 30.9 C 
 

0.25 QCILVKLW 69.1 31.5 C 
 

0.125 

QHNYYYYY 65.1 42.6 A 
 

0 PKFRYYYW 69.1 40.1 A 
 

0.25 

WWTKCGGK 65.2 35.7 C 
 

0.25 MCIYFRGY 69.1 35.3 C 
 

0.125 

QHTSENNL 65.2 24.5 B L8 -0.125 ARKFWVWF 69.1 35.3 A 
 

0.25 

QHQEIWLW 65.2 28 B 
 

-0.125 PKWFYYRY 69.2 44.3 A R7 0.25 

WWCMKSGK 65.2 28.9 C K5 0.25 IQWWGRMG 69.2 44.6 C 
 

0.125 

QHTSYYYY 65.5 29.7 A 
 

0 PWFYYRKY 69.3 53.9 A 
 

0.25 

NKKFWYAW 65.5 35.3 A 
 

0.25 YMYRMMVF 69.3 46.3 B 
 

0.125 

QHVNYYYY 65.5 29.1 A 
 

0 YMMVYRFM 69.3 37.7 B V4 0.125 

RHKMCWCW 65.6 31.3 B 
 

0.25 PYKRFYYW 69.4 38.6 A 
 

0.25 

MRKFYYYY 65.7 43.9 A 
 

0.25 RVKFAWFW 69.5 38.4 A 
 

0.25 

QHMYEILC 65.8 24.9 B 
 

-0.125 RGKFFWMM 69.5 46.8 B G2 0.25 

WWCTGKKG 66 35.2 C 
 

0.25 KKIWYYYY 69.5 32.5 A 
 

0.25 

PYFWKRYY 66.1 37.9 A K5 0.25 MFYLMRMY 69.5 37.8 B 
 

0.125 

PWKYFYRY 66.3 38.8 A R7 0.25 IVITKVHF 69.6 45.2 C K5 0.125 

MKKYYYYY 66.3 31.2 A 
 

0.25 QHRIYYYY 69.6 39.5 A 
 

0.125 

PKKFYYYY 66.5 35.4 A 
 

0.25 PAKFHWRW 69.6 35.7 B R7 0.25 

YRKSWGYW 66.5 37 A 
 

0.25 KPKFYYYY 69.6 42.3 A 
 

0.25 
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KKMFYYYY 66.5 43.3 A 
 

0.25 RRLRWILW 69.9 50.4 C L3 0.375 

QHRHYVQT 66.6 44.1 B 
 

0.125 KLKFYYYY 69.9 41.5 A 
 

0.25 

PYWYKRFY 66.6 47.6 A K5 0.25 IMQRGWWG 70 49.9 C 
 

0.125 

ARKMFYMW 66.6 33.9 B 
 

0.25 MYLMFYRM 70 35.9 B L3, R7 0.125 

KIKFYYYY 66.7 44.3 A 
 

0.25 HRRGWGWW 70.2 43.6 A 
 

0.25 

HRKPWCWM 66.7 35.7 B 
 

0.25 MVISWWRY 70.3 42.5 B R7 0.125 

LPFMYYRF 66.7 36.3 B R7 0.125 SFIFMRFF 70.3 40.7 B 
 

0.125 

KMKFYYYY 66.9 32.3 A 
 

0.25 KRMFYYYY 70.4 43.8 A 
 

0.25 

KVKFYYYY 66.9 44.4 A 
 

0.25 KFKHWYYA 70.5 43.5 A 
 

0.25 

PFKRYYYW 67 46.6 A 
 

0.25 PWKFYYYR 70.6 47.7 A 
 

0.25 

PFKYRWYY 67 40.5 A 
 

0.25 KLPFYYRY 70.7 42.5 A R7 0.25 

KRKFYYYY 67.1 44.3 A 
 

0.375 RWHIRIVI 70.9 41.2 C 
 

0.25 

KQKFGYWW 67.1 45.5 A 
 

0.25 CFTYFFRV 71 44.1 B F6, R7 0.125 

PWRYFYKY 67.1 39.9 A 
 

0.25 KIPRYYYF 71 49.8 A 
 

0.25 

GVKGWWFY 67.2 34.9 B 
 

0.125 MMGYMRYF 71.1 41.8 C 
 

0.125 

PWKRYYFY 67.2 44.8 A 
 

0.25 VRHIRLIW 71.3 45.8 C 
 

0.25 

PSKGWCFF 67.3 34.4 B 
 

0.125 RRVIWRWL 71.3 44.3 C L8 0.375 

RKMFYYYY 67.3 32.2 A 
 

0.25 RIRRVWLW 71.3 47.1 C 
 

0.375 

PYWFRKYY 67.3 43.3 A 
 

0.25 TCPFFWRY 71.3 39.3 B R7 0.125 

KMKAGLWT 67.5 44.4 B 
 

0.25 KWPYYRYF 71.4 43.4 A 
 

0.25 

RRPVMWCK 67.5 44.9 B V4 0.375 VRRWRLLW 72.2 45.8 C 
 

0.375 

MLFFRSFF 67.6 43.5 B 
 

0.125 MYMMRIFY 72.2 41 B 
 

0.125 

SIKHFWMI 67.6 42.1 B 
 

0.125 WGFCAIRQ 72.5 50.6 C G2, R7 0.125 

PKRFYYYW 67.7 33.5 A 
 

0.25 RVHIRLWI 72.6 47.2 C 
 

0.25 

RHRGWGWW 67.8 45.2 A 
 

0.25 MIMFYMRY 72.8 44.5 B R7 0.125 

KHKMWMMW 67.8 37 B 
 

0.25 QHPCWRTA 73.5 48 B 
 

0.125 

KAKFYHYW 67.8 43.3 A 
 

0.25 SMTFWWRI 75.5 44.5 B R7 0.125 

FGCFFWRW 80 48.7 B F1, G2, R7 0.125 
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Supplemental Figure S21 Additional peptide-bilayer snapshots. Snapshots of randomly selected peptide-bilayer 
systems at the end of each simulation, peptides have been removed to better show their effect on the bilayers. 
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Supplemental Figure S22 Additional peptide-bilayer snapshots. Snapshots of randomly selected peptide-bilayer 
systems at the end of each simulation, peptides have been removed to better show their effect on the bilayers. 
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3.3.1 Machine learning model improvement over time 

 

All three active learning paradigms (Table S2) showed rapid improvement in ability to select for high APL scoring 
peptides, including the ability to correct for a relatively bad set of predictions (Figure S23). 

 

 

Supplemental Figure S23 Active learning iterations. Iterative cycle of predicting and testing the top performing peptides 
with the results of the predicted (red) and measured APL values from duplicate runs (blue) for our three model 
combinations of models A, B and C. 
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3.4 Machine learning acceleration 

To determine the relative acceleration of using the active learning algorithm described herein we compare the 
random set of 200 peptides with the active learning algorithms’ peptides. We find that the active learning algorithms 
initially do not outperform random screening during the early phases where the models are learning the chemical 
space. However, as the active learning models improve the rate of discovery (active peptides found vs simulations 
performed) increases (Figure S24). 

 

Supplemental Figure S24 Active learning vs random selection. The rate of discovery of membrane active peptides is 
low for random screening (grey) as well the initial stages of active learning where the peptide selections are no better than 
random. However, as the active learning models (blue) improve the rate of discovery of membrane active peptides increases 
dramatically. 
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4. Data underpinning this publication  

All data underpinning this publication are openly available from the University of Strathclyde KnowledgeBase at 
doi.org/10.15129/e9b5fb03-b07a-46d2-9336-14cfaa1fea31  
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