## **Supplementary Information**

## Magnetic phase transition regulated by interface coupling effect in CrBr<sub>3</sub>/electride Ca<sub>2</sub>N van der Waals heterostructures

Zhengyu Yin, Baozeng Zhou\*

Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

\*Corresponding Authors

baozeng@tju.edu.cn (B. Zhou)



**Fig. S1** (a) The magnetization and heat capacity as functions of temperature for CrBr<sub>3</sub> monolayer. Orbital-resolved MAE for the (b) Cr and (c) Br ion in the CrBr<sub>3</sub> monolayer.



Fig. S2 The top and side views of CrBr<sub>3</sub>/Ca<sub>2</sub>N heterostructure with different stacking orders: (a) AB'-r, (b) AB-h, and (c) AB'-h.

Table S1. The energy of FM and various AFM states with different stacking orders for the  $CrBr_3/Ca_2N$  heterostructure. The light gray part indicates the most stable energy ground state under each structure.

| Model                      | AB-r   | AB'-r  | AB-h   | AB'-h  |
|----------------------------|--------|--------|--------|--------|
| E <sub>FM</sub> (eV)       | -320.6 | -318.4 | -312.2 | -320.6 |
| E <sub>Neel-AFM</sub> (eV) | -321.0 | -319.2 | -311.6 | -319.5 |
| Ezigzag-AFM (eV)           | -316.2 | -319.3 | -312.7 | -311.8 |
| $E_{ m stripy-AFM}$ (eV)   | -311.1 | -309.9 | -300.4 | -308.0 |

**Table S2.** The binding energies ( $E_b$ ) of the CrBr<sub>3</sub>/Ca<sub>2</sub>N heterostructures in the most stable ground state under different stacking orders.

|                       | AB-r (Neel-AFM) | AB'-r <sub>(zigzag-AFM)</sub> | AB-h <sub>(zigzag-AFM)</sub> | AB'-h <sub>(FM)</sub> |
|-----------------------|-----------------|-------------------------------|------------------------------|-----------------------|
| $E_{\rm b}$ (eV/atom) | -0.474          | -0.425                        | -0.246                       | -0.457                |



Fig. S3 The fluctuations of energy and temperature as well as the final configuration of the AB-r heterostructure are obtained from AIMD simulation.

**Table S3.** The exchange coupling parameters  $(J_1, J_2)$ , Atomic Magnetic Moments  $(M_{Cr})$ , Curie temperature  $(T_C)$ , Magnetic Anisotropy Energy (MAE), and Energy Difference between FM and AFM Spin Ordering ( $\Delta E_{FM-AFM}$ ) of the 2×2×1 supercell for the CrBr<sub>3</sub> with the electron/hole injection  $(Q_e)$ .

| <i>Q<sub>e</sub></i> (e/u.c) | <i>J</i> <sup>1</sup> (meV) | $J_2$ (meV) | $M_{ m Cr}$ ( $\mu_{ m B}$ ) | <i>T<sub>C</sub></i> (K) | MAE<br>(µeV/Cr) | ΔE <sub>FM-AFM</sub><br>(meV) |
|------------------------------|-----------------------------|-------------|------------------------------|--------------------------|-----------------|-------------------------------|
| 1                            | 28.66                       | -1.02       | 3.355                        | 32                       | 375             | -68                           |
| 0.75                         | 26.75                       | 0.37        | 3.327                        | 34                       | 282             | -78                           |
| 0.5                          | 24.83                       | 1.38        | 3.299                        | 35                       | 166             | -84                           |
| 0.25                         | 23.14                       | 2.00        | 3.271                        | 36                       | 26              | -86                           |
| 0                            | 21.73                       | 2.26        | 3.243                        | 34                       | -156            | -85                           |
| -0.25                        | 24.97                       | 3.41        | 3.239                        | 46                       | -1172           | -107                          |
| -0.5                         | 28.14                       | 4.74        | 3.233                        | 55                       | -1788           | -130                          |
| -0.75                        | 31.47                       | 6.14        | 3.23                         | 66                       | -2177           | -155                          |
| -1                           | 34.63                       | 7.63        | 3.225                        | 75                       | -2464           | -180                          |



Fig. S4 The magnetization and heat capacity as functions of temperature for CrBr<sub>3</sub> monolayer with

charge doping.