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Figure S1. Contact angle test of P-5 and P-M.



Figure S2. Galvanostatic charge/discharge curves of (a) P-M, (b)  P-H, and (c) P-5 at 500 mA·g-1 

after various cycles. Galvanostatic charge/discharge curves of (d) P-M, (e) P-H, and (f) P-5 at different 

current densities.



Figure S3. Coulombic Efficiency of P-5 and P-M at 500 mA·g-1.



Figure S4. Cycling stability of P-H and P-5 at 1 A·g-1 after 1000 cycles.



Figure S5. (a) CV curves of P-H and P-M at 1.0 mV/s. (b) b value of P-H and P-M



Figure S6. the Nyquist plot of P-5, P-M, and P-H 9 (a) before and (b) after cycling at 500 mA·g-1.



Table S1. Electrical conductivity tests of P-5, P-H, and P-M.

Electrical conductivity (s/cm)
Site

P-5 P-H P-M

Site 1 0.724 1.288 1.292

Site 2 0.721 1.289 1.294

Site 3 0.721 1.290 1.293

Average value 0.722 1.289 1.292



Table S2. Elemental analysis of P-5, P-H, and P-M.

Elemental analysis (at.%)
Materials

C O N

P-5 89.6 10.4 -

P-H 94.6 3.36 2.04

P-M 90.23 4.26 5.51



Table S3. Electrical performances of various carbon materials
Cycling performance

Materials
Specific 

capacity/mAh·g-1 

(I/mA·g-1)

Current
density 

(mA·g−1)

Cycle
number

Capacity
(mA h·g−1)

P-M 323(500) 1000 1000 109
FNG[1] 300(60) 60 40 225

Natural graphite[2] 110(99) 660 6000 60
EG[3]

(expanded graphite)
110(1000) 5000 27500 100

SG[3]
(synthetic graphite)

152.5(500) 5000 500 75.5

Nanosheet-bricked 
PG[4]

(porous graphite)
104(1000) 100000 3000 90

CG[5]
(commercial 

graphite)
101(1000) 5000 30000 60

3D GF[6]
(graphitic foam)

90(1000) 1200 4000 60

3D GMN[7]
(graphene network)

56(3000) 2400 200 57

Defect-free GA[8] 97(50000) 5000 25000 100 3±

FLG[9]
(few-layer graphene)

173(1000) 10000 5000 78

TLG[10]
(three-layer 
graphene)

197(200) 5000 1000 147

GF@CFC[11]
(carbon fiber cloth)

140(100) 3000 300 60

CMK-3[12]
(commercial ordered 
mesoporous carbon)

32(270) 980 36000 28

CMK-8[13] 100.5(300) 2000 30000 46.4
Coconut PAC[14]
(porous activated 

carbon)
150(100) 1000 1500 80

CNF[15]
(commercial carbon 

nanofiber)
95(50000) 10000 20000 105

MoS2/ MNC[16]
(N-doped carbon)

191.2(500) 1000 1700 127.5

NC@ZnSe[17] 172(300) 500 250 60
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