Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Electronic Supporting Information

Low-temperature Redox Activity and Alcohol Ammoxidation Performance on Cu- and Ru-incorporated Ceria Catalysts

Chaoqi Chen,^a Satoru Ikemoto,^a Gen-ichi Yokota,^a Kimitaka Higuchi,^b Satoshi Muratsugu,^{*a,c} and Mizuki Tada^{*a,c,d}

^a Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusaku, Nagoya, Aichi 464-8602, Japan

^b Institute of Materials and Systems for Sustainability, Nagoya University. Furo-cho, Chikusaku, Nagoya, Aichi 464-8602, Japan

^c Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan

^d Research Center for Materials Science (RCMS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan

E-mail: muratsugu.satoshi.a5@f.mail.nagoya-u.ac.jp, tada.mizuki.u6@f.mail.nagoya-u.ac.jp

Contents

General stru	ctural characterization	
Table S1	Metal Compositions Estimated by ICP-OES Analysis and BET Surface Areas	S5
	from N ₂ Adsorption Analysis for As-prepared Cu _{0.18} Ru _{0.05} CeO _z , Cu _{0.18} CeO _z ,	
	$Ru_{0.04}CeO_z$, and CeO_z	
Fig. S1	TEM images of as-prepared $Cu_{0.18}Ru_{0.05}CeO_z$.	S5
Table S2	Ru Oxidation States of As-prepared $Cu_{0.18}Ru_{0.05}CeO_z$ estimated by Ru K- edge XANES Analysis and References	S6
Fig. S2	(a) Ru K-edge XANES spectra of standard samples and (b) calibration curve	S6
	obtained from the energy at the 50% level of the Ru K-edge jump.	
Table S3	Ratio of Ce ³⁺ and Ce ⁴⁺ on As-prepared Cu _{0.18} Ru _{0.05} CeO ₂ Calculated from Ce	S7
	3d XPS Spectrum	
Fig. S3	Calibration curve for Ce L _{III} -edge XANES spectra for the oxidation state	S7
	calculation of Ce in $Cu_{0.18}Ru_{0.05}CeO_z$.	
Fig. S4	O 1s XPS spectrum of as-prepared $Cu_{0.18}Ru_{0.05}CeO_z$.	S8
Fig. S5	(a) Cu K-edge EXAFS (a1) oscillation and (a2) Fourier transform for	S9
	reference CuO. (b) Ru K-edge EXAFS (b1) oscillation and (b2) Fourier	
	transform for reference RuO ₂ .	
Table S4	Structural Parameters Obtained by the Curve-Fitting Analysis of Cu K-edge	S10
	EXAFS Fourier Transform of Reference CuO	
Table S5	Structural Parameters Obtained by the Curve-Fitting Analysis of Ru K-edge	S10
	EXAFS Fourier Transform of Reference RuO ₂	
Fig. S6	(a) Cu K-edge EXAFS (a1) oscillation and (a2) Fourier transform for as-	S11
	prepared $Cu_{0.18}Ru_{0.05}CeO_z$. (b) Ru K-edge EXAFS (b1) oscillation and (b2)	
	Fourier transform for as-prepared $Cu_{0.18}Ru_{0.05}CeO_z$.	
Table S6	Structural Parameters Obtained by the Curve-Fitting Analysis of Cu K-edge	S12
	EXAFS Fourier Transform of As-prepared Cu _{0.18} Ru _{0.05} CeO _z	
Table S7	Structural Parameters Obtained by Curve-Fitting Analysis of Ru K-edge	S12
	EXAFS of As-prepared $Cu_{0.18}Ru_{0.05}CeO_z$	
Redox perfor	mance evaluation	010
Table S8	Results of TPR and TPO on $Cu_{0.18}Ru_{0.05}CeO_z$, $Cu_{0.18}CeO_z$, and $Ru_{0.04}CeO_z$	<u>SI3</u>
Table S9	Ru Oxidation States of $Cu_{0.18}Ru_{0.05}CeO_z$ After First H ₂ Reduction, First O ₂	SI 4
	Oxidation, and Second H_2 Reduction Estimated by In Situ Ru K-edge	
	XANES Spectra	014
1 able S10	Linear Combination Fitting of In Situ Cu K-edge XANES for	814
	$U_{0.18}$ Ku _{0.05} CeO _z After First H ₂ Keduction, First O ₂ Oxidation, and Second U. Deduction	
Table 611	Co-Ovidation States of Cu. Dr. CoO After First H. Doduction First O	Q14
1 adie S11	Ce Oxidation States of $Cu_{0.18}Ku_{0.05}CeO_z$ After First H ₂ Reduction, First O ₂	514

	Oxidation, and Second H ₂ Reduction Estimated by <i>In Situ</i> Ce L_{III} -edge	
Fig. S7	Cu K-edge <i>in situ</i> XANES spectra for $Cu_{0.18}Ru_{0.05}CeO_z$. (a) After first H ₂ reduction (b) after first O ₂ oxidation and (c) after second H ₂ reduction	S15
Table S12	Calculated H_2/O_2 Consumptions Corresponding to the Reduction/Oxidation of Metal Species in $Cu_{0.18}Ru_{0.05}CeO_z$ Estimated from the <i>In Situ</i> Cu K-edge, Ru K-edge, and Ce L _{III} -edge XANES Spectral Changes	S16
Fig. S8	Cu K-edge EXAFS oscillations for $Cu_{0.18}Ru_{0.05}CeO_z$. (a) After first H ₂ reduction at 523 K, (b) after first O ₂ oxidation at 573 K, (c) after third H ₂ reduction at 523 K, and (d) after third O ₂ oxidation at 573 K.	S17
Fig. S9	(a) Ru K-edge EXAFS oscillations for $Cu_{0.18}Ru_{0.05}CeO_z$. (a1) After first H ₂ reduction at 523 K, (a2) after first O ₂ oxidation at 573 K, (a3) after third H ₂ reduction at 523 K, and (a4) after third O ₂ oxidation at 573 K. (b) A Ru K-edge EXAFS oscillation for Ru powder.	S18
Table S13	Structural Parameters Obtained by Curve-Fitting Analysis of Cu K-edge EXAFS Fourier Transforms for Cu _{0.18} Ru _{0.05} CeO _z After the First and Third Redox Cycles	S19
Ammoxidatio	on of benzyl alcohol by using as $Cu_{0.18}Ru_{0.05}CeO_z$ catalyst	
Fig. S10	(a) Benzonitrile production rates for $Cu_{0.18}Ru_{0.05}CeO_z$ (red), $Cu_{0.18}CeO_z$ (blue), $Ru_{0.04}CeO_z$ (green), and a physical mixture of $Cu_{0.18}CeO_z$ and $Ru_{0.04}CeO_z$ (pink). (b) Initial reaction rate of $Cu_{0.18}Ru_{0.05}CeO_z$ (red), $Cu_{0.18}CeO_z$ (red), $Cu_{0.18}CeO_z$ (pink).	S20
Fig. S11	Heterogeneity test for $Cu_{0.18}Bu_{0.05}CeO_{-10}$	S21
Fig. S12	XRD patterns of $Cu_{0.18}Ru_{0.05}CeO_z$ before and after the ammoxidation of benzyl alcohol for 24 h at 423 K.	S21 S22
Fig. S13	HAADF-STEM images and EDS images of $Cu_{0.18}Ru_{0.05}CeO_z$ after the ammoxidation of benzyl alcohol for 24 h at 423 K.	S23
Fig. S14	(a) Cu K-edge, (b) Ru K-edge, and (c) Ce L_{III} -edge XANES spectra of $Cu_{0.18}Ru_{0.05}CeO_z$ after the ammoxidation of benzyl alcohol for 24 h at 423 K (with 0.32 MPa of NH ₃ and 1.0 MPa of O ₂).	S24
Fig. S15	(a) Cu K-edge EXAFS (a1) oscillations and (a2) Fourier transforms for $Cu_{0.18}Ru_{0.05}CeO_z$ after the ammoxidation of benzyl alcohol for 24 h at 423 K. (b) Ru K-edge EXAFS (b1) oscillations and (b2) Fourier transforms for $Cu_{0.18}Ru_{0.05}CeO_z$ after the ammoxidation of benzyl alcohol for 24 h at 423 K.	S25
Table S14	Structural Parameters Obtained by the Curve-Fitting Analysis of Cu K-edge EXAFS Fourier Transform of $Cu_{0.18}Ru_{0.05}CeO_z$ After the Ammoxidation of Benzyl Alcohol for 24 h at 423 K	S26
Table S15	Structural Parameters Obtained by the Curve-Fitting Analysis of Ru K-edge EXAFS Fourier Transform of $Cu_{0.18}Ru_{0.05}CeO_z$ After the Ammoxidation of Benzyl Alcohol for 24 h at 423 K	S26

Fig. S16	(a) Cu K-edge, (b) Ru K-edge, and (c) Ce L_{III} -edge XANES spectra of $Cu_{0.18}Ru_{0.05}CeO_z$ before and after the ammoxidation of benzyl alcohol under an inert atmosphere for 24 h at 423 K (with 0.32 MPa of NH ₃ and 1.0 of MPa	S27
	N ₂).	
Table S16	Catalytic Performance of $Cu_{0.18}Ru_{0.05}CeO_z$ and the Control Groups for the Selective Oxidation of Benzyl Alcohol	S28
Table S17	Catalytic Performance of $Cu_{0.18}Ru_{0.05}CeO_z$ and the Control Groups for the Ammoxidation of Benzaldehyde	S29
Scheme S1	Ammoxidation of benzyl alcohol and the roles of Cu and Ru species in each reaction step.	S30
General setu	o condition for the experiments	
Fig. S17	Setup for <i>in situ</i> QXAFS measurements for H ₂ reduction and O ₂ oxidation.	S31
References		S32

Structural characterization of as-prepared Cu_{0.18}Ru_{0.05}CeO_z

Table S1. Metal Compositions Estimated by ICP-OES Analysis and BET Surface Areas for N2Adsorption for As-prepared $Cu_{0.18}Ru_{0.05}CeO_z$, $Cu_{0.18}CeO_z$, $Ru_{0.04}CeO_z$, and CeO_z

Prepared oxide	BET surface area /m ² g ⁻¹	Molar ratio of Cu/Ru/Ce
$Cu_{0.18}Ru_{0.05}CeO_z$	1.24×10^{2}	0.178/0.05/1
$Cu_{0.18}CeO_z$	1.05×10^{2}	0.0176/<0.002/1
$Ru_{0.04}CeO_z$	1.14×10^{2}	<0.0004/0.040/1
CeO_z	1.20×10^{2}	-

Fig. S1. TEM images of as-prepared Cu_{0.18}Ru_{0.05}CeO_z.

Energy /eV ^a	Oxidation state
22116.0	0
22120.6	3
22121.3	4
22125.5	7
22122.2	4.5^{b}
	Energy /eV ^a 22116.0 22120.6 22121.3 22125.5 22122.2

Table S2. Ru Oxidation States of As-prepared $Cu_{0.18}Ru_{0.05}CeO_z$ Estimated by Ru K-edge XANES Analysis and References

^{*a*} The energy at the 50% level of the edge jump in the spectrum. ^{*b*} Calculated from the calibration curve in Fig. S2(b).

Fig. S2. (a) Ru K-edge XANES spectra of standard samples and (b) calibration curve obtained from the energy at the 50% level of the Ru K-edge jump.

Table S3. Ratio of Ce³⁺ and Ce⁴⁺ on As-prepared Cu_{0.18}Ru_{0.05}CeO_z Calculated from the Ce 3d XPS Spectrum

Sample	Ratio of Ce ³⁺	Ratio of Ce ⁴⁺
$\begin{array}{c} \mathrm{Cu}_{0.18}\mathrm{Ru}_{0.05}\mathrm{CeO}_z\\ \text{(as-prepared)} \end{array}$	0.27	0.73

XPS spectra in Fig. 1(c3) in the main text were used for the calculation. The sum of the areas of u', u_0 , v', and v_0 , which were attributed to Ce³⁺ (pink line in Fig. 1(c3)),¹ was calculated (area (A)). The sum of the areas of u''', u'', u_0 , v''', v'', and v_0 , which were attributed to Ce⁴⁺ (black line in Fig. 1(c3))^{1,2}, was calculated (area (B)). The ratio of Ce³⁺ or Ce⁴⁺ was calculated as (area (A) or area (B))/(area (A) + area (B)).

Fig. S3. Calibration curve for Ce L_{III} -edge XANES spectra for the oxidation state calculation of Ce in Cu_{0.18}Ru_{0.05}CeO_z. The intensity of the Ce L_{III} -edge at 5741.3 eV (peak top of CeO₂) was used for commercial CeO₂ and Ce₂(CO₃)₃ (Ce⁴⁺ and Ce³⁺ references, respectively).

Fig. S4. O 1s XPS spectrum of as-prepared $Cu_{0.18}Ru_{0.05}CeO_z$. The peak at 529.6 eV was attributed to lattice oxygen of CeO_2^3 and that at 531.7 eV was attributed to hydroxyl groups⁴ or oxygen vacancies from Ce^{3+} of $CeO_2^{.5}$

Fig. S5. (a) Cu K-edge EXAFS (a1) oscillation and (a2) Fourier transform for reference CuO ($k = 30-160 \text{ nm}^{-1}$). Black solid lines showed observed data and red dashed lines showed fitted data. (b) Ru K-edge EXAFS (b1) oscillation and (b2) Fourier transform for reference RuO₂ ($k = 30-180 \text{ nm}^{-1}$). Black solid lines showed observed data and red dashed lines showed fitted data.

Path	Shell	CN	R /nm	$\Delta E / eV$	$\sigma^2/10^{-5}$ nm ²	$R_{\rm f}$ %
1	Cu-O	2	0.191 ± 0.001	4.2 ± 0.8	2 ± 1	-
2	Cu-O	2	0.200 ± 0.001	4.2 ± 0.8	2 ± 1	
3	Cu-O	2	0.286 ± 0.004	4.2 ± 0.8	2 ± 1	
4	CuCu	4	0.293 ± 0.002	5.6 ± 2.3	8 ± 2	
5	CuCu	4	0.312 ± 0.001	5.6 ± 2.3	8 ± 2	
6	CuCu	2	0.322 ± 0.003	5.6 ± 2.3	8 ± 2	0.6
7	Cu-O	2	0.334 ± 0.007	4.2 ± 0.8	2 ± 1	
8	CuCu	2	0.340 ± 0.003	5.6 ± 2.3	8 ± 2	
9	Cu-O	2	0.348 ± 0.004	4.2 ± 0.8	2 ± 1	
10	CuCu	2	0.383 ± 0.004	5.6 ± 2.3	8 ± 2	
11	Cu-O	2	0.395 ± 0.005	4.2 ± 0.8	2 ± 1	

Table S4. Structural Parameters Obtained by the Curve-Fitting Analysis of Cu K-edge EXAFS Fourier Transform (Measured at 298 K) of Reference CuO

 S_0^2 was calculated to be 0.70 ± 0.05 , k = 30-160 nm⁻¹, R = 0.10-0.38 nm. CNs of all shells were fixed.

Table S5. Structural Parameters Obtained by the Curve-Fitting Analysis of Ru K-edge EXAFS Fourier Transform (Measured at 298 K) of Reference RuO₂

Path	Shell	CN	<i>R</i> /nm	ΔE /eV	$\sigma^2/10^{-5}~\mathrm{nm}^2$	$R_{\rm f}$ %
1	Ru-O	6	0.197 ± 0.001	7.2 ± 2.0	3 ± 1	
2	RuRu	2	0.312 ± 0.001	7.7 ± 2.4	3 ± 1	
3	Ru-O	4	0.327 ± 0.005	7.2 ± 2.0	3 ± 1	3.0
4	RuRu	8	0.355 ± 0.001	7.7 ± 2.4	3 ± 1	
5	Ru-O	4	0.374 ± 0.007	7.2 ± 2.0	3 ± 1	

 $\overline{S_0^2}$ was calculated to be 0.86 ± 0.13 . k = 30-180 nm⁻¹, R = 0.10-0.38 nm. CNs of all shells were fixed.

Fig. S6. (a) Cu K-edge EXAFS (a1) oscillation and (a2) Fourier transform for as-prepared $Cu_{0.18}Ru_{0.05}CeO_z$ ($k = 30-140 \text{ nm}^{-1}$). (b) Ru K-edge EXAFS (b1) oscillation and (b2) Fourier transform for as-prepared $Cu_{0.18}Ru_{0.05}CeO_z$ ($k = 30-130 \text{ nm}^{-1}$). (a2 and b2) Black solid lines showed observed data and red dashed lines showed fitted data.

Table S6. Structural Parameters Obtained by the Curve-Fitting Analysis of Cu K-edge EXAFS Fourier Transform (Measured at 298 K) of As-prepared $Cu_{0.18}Ru_{0.05}CeO_z$

	Sample	Shell	CN	<i>R</i> /nm	ΔE /eV	$\sigma^2/10^{-5} \mathrm{nm}^2$	<i>R</i> _f /%
	$Cu_{0.18}Ru_{0.05}CeO_z$	Cu O	4.6	0.196	15 25	5 + 2	0.0
	(as-prepared)	Cu-O	± 1.2	± 0.002	4.3 ± 5.3	5 ± 5	0.9
1 2	C 1 1 0 70 1	20 140	1 0 0	10 0 10			

 S_0^2 was fixed to be 0.70, k = 30-140 nm⁻¹, R = 0.12-0.19 nm.

Table S7. Structural Parameters Obtained by the Curve-Fitting Analysis of Ru K-edge EXAFS FourierTransform (Measured at 298 K) of As-prepared $Cu_{0.18}Ru_{0.05}CeO_z$

Sample	Shell	CN	<i>R</i> /nm	$\Delta E / eV$	$\sigma^2/10^{-5}$ nm ²	R _f /%
$Cu_{0.18}Ru_{0.05}CeO_z$	Du O	3.2	0.194	04+40	2 2	0.2
(as-prepared)	Ru-O	± 1.0	± 0.002	9.4 ± 4.9	3 ± 2	0.2

 S_0^2 was fixed as 0.86, k = 30-130 nm⁻¹, R = 0.12-0.19 nm.

Redox performance evaluation

Catalyst	Peak top of H ₂ -TPR	H ₂ consumption	O ₂ consumption
Catalyst	/ K	/mmol g_cat ⁻¹	/mmol g_cat ⁻¹
		523 K	573 K
As-prepared Cu _{0.18} Ru _{0.05} CeO _z	353 and 363	2.39	0.92
Second TPR of Cu _{0.18} Ru _{0.05} CeO _z	333	1.98	0.93
Third TPR of Cu _{0.18} Ru _{0.05} CeO _z	317 - 331	1.90	0.92
Fourth TPR of Cu _{0.18} Ru _{0.05} CeO _z	315 - 331	1.96	0.91
Control group I			
As-prepared Cu _{0.18} CeO _z	415	1.44	0.89
Second TPR of $Cu_{0.18}CeO_z$	409	1.51	0.89
Third TPR of $Cu_{0.18}CeO_z$	361 and 389	1.47	0.90
Fourth TPR of $Cu_{0.18}CeO_z$	361 and 389	1.49	0.91
As-prepared Ru _{0.04} CeO _z	339	1.60	0.88
Second TPR of Ru _{0.04} CeO _z	319	1.36	0.87
Third TPR of Ru _{0.04} CeO _z	317	1.26	0.87
Fourth TPR of $Ru_{0.04}CeO_z$	317	1.27	0.87
As-prepared CeO_z^2	673	0.51 (303–773 K)	-
Control group II			
CuO	177	5 00 (202 772 V)	
(commercial product from Wako)	4//	3.90(303 - 773 K)	-
RuO ₂ (commercial product from Wako)	429	5.67 (303–773 K)	-

Table S8. Results of TPR and TPO on Cu_{0.18}Ru_{0.05}CeO_z, Cu_{0.18}CeO_z, and Ru_{0.04}CeO_z

Sample amounts: 200 mg (as-prepared $Cu_{0.18}Ru_{0.05}CeO_z$ and control group I), 14.6 mg (CuO), and 7.1 mg (RuO₂). The sample was treated with 27 kPa H₂ and the temperature was increased at a rate of 5 K min⁻¹ from 303 to 523 K, except for CeO_z, CuO, and RuO₂ to 773 K. Then, the sample was treated with 27 kPa O₂ from 303 to 573 K at a rate of 5 K min⁻¹ and held at 573 K for 2 h. Once the entire system returned to 293 K, the second and subsequent rounds of TPR and TPO measurements were conducted by introducing 27 kPa H₂ or O₂ gas by a similar procedure. The change in the pressure was recorded at appropriate intervals.

Standard Ru sample	Energy /eV ^a	Ru oxidation state ^b
$Cu_{0.18}Ru_{0.05}CeO_z$ (after first H ₂ reduction)	22117.6	1.06
$Cu_{0.18}Ru_{0.05}CeO_z$ (after first O ₂ oxidation)	22122.1	4.40
$Cu_{0.18}Ru_{0.05}CeO_z$ (after second H ₂ reduction)	22116.4	0.19

Table S9. Ru Oxidation States of $Cu_{0.18}Ru_{0.05}CeO_z$ After First H₂ Reduction, First O₂ Oxidation, and Second H₂ Reduction Estimated by *In Situ* Ru K-edge XANES Spectra

^{*a*} Energy at the 50% level of the absorption edge jump. ^{*b*} Calculated from the calibration curve in Fig. S2(b).

Table S10. Linear Combination Fitting of *In Situ* Cu K-edge XANES for $Cu_{0.18}Ru_{0.05}CeO_z$ After First H₂ Reduction, First O₂ Oxidation, and Second H₂ Reduction

Sample	Coefficient c ₁ of CuO	Coefficient c ₂ of Cu ₂ O	Coefficient c3 of Cu	Average oxidation states of Cu ^a
$Cu_{0.18}Ru_{0.05}CeO_z$ (after first H ₂ reduction)	0.00	0.30	0.70	0.30
$Cu_{0.18}Ru_{0.05}CeO_z$ (after first O ₂ oxidation)	1.00	0.00	0.00	2.00
$Cu_{0.18}Ru_{0.05}CeO_z$ (after second H ₂ reduction)	0.00	0.29	0.71	0.29

Fitting equation: spectrum (sample) = $c_1 \times$ spectrum (CuO) + $c_2 \times$ spectrum (Cu₂O) + $c_3 \times$ spectrum (Cu foil). Energy range of the fitting: 8960.3–9010.3 eV. $c_1 + c_2 + c_3$ was fixed as 1.

^{*a*} Average oxidation state of Cu in the sample was calculated from the three coefficients (c_1 , c_2 , and c_3).

Table S11. Ce Oxidation States of $Cu_{0.18}Ru_{0.05}CeO_z$ After First H₂ Reduction, First O₂ Oxidation, and Second H₂ Reduction Estimated by *In Situ* Ce L_{III}-edge XANES Spectra

Sample	Ce oxidation state ^a
$Cu_{0.18}Ru_{0.05}CeO_z$ (after first H ₂ reduction)	3.62
$Cu_{0.18}Ru_{0.05}CeO_z$ (after first O ₂ oxidation)	3.83
$Cu_{0.18}Ru_{0.05}CeO_z$ (after second H ₂ reduction)	3.62

^{*a*} Calculated from the calibration curve in Fig. S3.

Fig. S7. Cu K-edge *in situ* XANES spectra for $Cu_{0.18}Ru_{0.05}CeO_z$. (a) After first H₂ reduction, (b) after first O₂ oxidation, and (c) after second H₂ reduction. Black lines show the observed spectrum of $Cu_{0.18}Ru_{0.05}CeO_z$ after H₂ or O₂ treatment. Red dashed lines show the LCF fitting spectrum of $Cu_{0.18}Ru_{0.05}CeO_z$ after H₂ or O₂ treatment.

Table S12. Calculated H_2/O_2 Consumptions Corresponding to the Reduction/Oxidation of Metal Species in $Cu_{0.18}Ru_{0.05}CeO_z$ Estimated from the *In Situ* Cu K-edge, Ru K-edge, and Ce L_{III}-edge XANES Spectral Changes^{*a*}

Metal species	H ₂ consumption in the first TPR /mmol g_cat ⁻¹	O ₂ consumption in the first TPO /mmol g_cat ⁻¹	H ₂ consumption in the second TPR /mmol g_cat ⁻¹
Cu	0.78	0.39	0.79
Ru	0.43	0.25	0.49
Ce	0.60	0.21	0.57
Total	1.81	0.85	1.85

^{*a*} Changes in the oxidation states were estimated from the changes in the *in situ* XANES before and after the reduction or oxidation (Fig. 3). The valence changes were calculated as the H_2/O_2 consumption on 1 g of $Cu_{0.18}Ru_{0.05}CeO_z$. Finally, the sum of the consumed H_2/O_2 was calculated as the total.

Fig. S8. Cu K-edge EXAFS oscillations for $Cu_{0.18}Ru_{0.05}CeO_z$ ($k = 30-140 \text{ nm}^{-1}$). (a) After first H₂ reduction at 523 K, (b) after first O₂ oxidation at 573 K, (c) after third H₂ reduction at 523 K, and (d) after third O₂ oxidation at 573 K.

Fig. S9. (a) Ru K-edge EXAFS oscillations for $Cu_{0.18}Ru_{0.05}CeO_z$ ($k = 30-130 \text{ nm}^{-1}$). (a1) After first H₂ reduction at 523 K, (a2) after first O₂ oxidation at 573 K, (a3) after third H₂ reduction at 523 K, and (a4) after third O₂ oxidation at 573 K. (b) A Ru K-edge EXAFS oscillation for Ru powder ($k = 30-180 \text{ nm}^{-1}$).

	/					
Sample	Shell	CN	<i>R</i> /nm	ΔE /eV	$\sigma^2/10^{-5}$ nm ²	<i>R</i> _f /%
(a1) After first H ₂	~~~~	6.1	0.253	-0.1	10	
reduction at 523 K	Cu-Cu	± 0.9	± 0.001	± 1.4	± 1	0.5
(a2) After first O ₂		4.7	0.196	3.9	5	
oxidation at 573 K	Cu-O	± 0.8	± 0.002	± 3.8	± 2	2.0
(a3) After third H ₂ reduction at 523 K		6.9	0.252	-0.9	12	
	Cu-Cu	± 1.0	± 0.001	± 2.0	± 1	0.8
(a4) After third O_2		5.7	0.195	2.5	8	
oxidation at 573 K	Cu-O	± 2.7	± 0.004	± 6.7	± 5	3.9

Table S13. Structural Parameters Obtained by Curve-Fitting Analysis of Cu K-edge EXAFS Fourier Transforms (Measured at 298 K) for $Cu_{0.18}Ru_{0.05}CeO_z$ After the First and Third Redox Cycles

 S_0^2 was fixed as 1 for metallic Cu and 0.70 for Cu²⁺ oxide. k = 30-140 nm⁻¹, R = 0.18-0.27 nm (a1), 0.12-0.19 nm (a2), 0.18-0.27 nm (a3), and 0.12-0.19 nm (a4).

Ammoxidation performance of Cu_{0.18}Ru_{0.05}CeO_z

Fig. S10. (a) Benzonitrile production rates for $Cu_{0.18}Ru_{0.05}CeO_z$ (red), $Cu_{0.18}CeO_z$ (blue), $Ru_{0.04}CeO_z$ (green), and a physical mixture of $Cu_{0.18}CeO_z$ and $Ru_{0.04}CeO_z$ (pink). (b) Initial reaction rate of $Cu_{0.18}Ru_{0.05}CeO_z$ (red), $Cu_{0.18}CeO_z$ (blue), and $Ru_{0.04}CeO_z$ (green). The reaction was carried out by using four different autoclaves at 423 K and stopped at 15, 30, 45, and 75 min. Each reaction was performed three times to obtain the error bars. $Cu_{0.18}CeO_z + Ru_{0.04}CeO_z$ was obtained by physically mixing the two catalysts together.

Benzonitrile production rates were calculated by (amount of benzonitrile produced, mmol)/(catalyst weight, g)/(reaction time, min).

Reaction conditions: Benzyl alcohol (1.93 mmol), toluene (1.0 mL), dodecane (internal standard; 0.07 mL), NH₃ (0.32 MPa), O₂ (1.0 MPa), 423 K. Mass balance was over 0.9 at this experiment. $Cu_{0.18}Ru_{0.05}CeO_z$ (14.7 mg), Ru/Cu/alcohol/dodecane = 1/3.5/500/500. $Cu_{0.18}CeO_z$ (14.3 mg), Cu/alcohol/dodecane = 1/150/150. $Ru_{0.04}CeO_z$ (15.3 mg), Ru/alcohol/dodecane = 1/500/500.

Fig. S11. Heterogeneity test for $Cu_{0.18}Ru_{0.05}CeO_z$. Black dots: Time-conversion plot of $Cu_{0.18}Ru_{0.05}CeO_z$. Pink dots: ammoxidation of benzyl alcohol after filtering and removing $Cu_{0.18}Ru_{0.05}CeO_z$ from the reaction. The benzyl alcohol conversion in the heterogeneity test was measured at 2, 6, 12, 24, and 36 h.

Reaction conditions: Benzyl alcohol (1.93 mmol), toluene (1.0 mL), dodecane (internal standard; 0.07 mL), 423 K. Mass balance was over 0.9. $Cu_{0.18}Ru_{0.05}CeO_z$ (74 mg), Ru/Cu/benzyl alcohol/NH₃/dodecane = 1/3.5/100/191/100.

Fig. S12. XRD patterns of $Cu_{0.18}Ru_{0.05}CeO_z$ before and after the ammoxidation of benzyl alcohol for 24 h at 423 K. Black line: $Cu_{0.18}Ru_{0.05}CeO_z$ before the reaction. Red line: $Cu_{0.18}Ru_{0.05}CeO_z$ after the reaction.

Fig. S13. (a) HAADF-STEM images of $Cu_{0.18}Ru_{0.05}CeO_z$ after the ammoxidation of benzyl alcohol for 24 h at 423 K, and (b) EDS map of Cu, (c) EDS map of Ru, and (d) overlapped EDS maps of Cu and Ru.

Fig. S14. (a) Cu K-edge, (b) Ru K-edge, and (c) Ce L_{III} -edge XANES spectra of $Cu_{0.18}Ru_{0.05}CeO_z$ after the ammoxidation of benzyl alcohol for 24 h at 423 K (with 0.32 MPa of NH₃ and 1.0 MPa of O₂). Black lines: XANES spectra of as-prepared $Cu_{0.18}Ru_{0.05}CeO_z$ before the reaction. Red lines: XANES spectra of $Cu_{0.18}Ru_{0.05}CeO_z$ after the ammoxidation of benzyl alcohol for 24 h at 423 K.

Fig. S15. (a) Cu K-edge EXAFS (a1) oscillations and (a2) Fourier transforms of $Cu_{0.18}Ru_{0.05}CeO_z$ after the ammoxidation of benzyl alcohol for 24 h at 423 K ($k = 30-140 \text{ nm}^{-1}$). (b) Ru K-edge EXAFS (b1) oscillations and (b2) Fourier transforms of $Cu_{0.18}Ru_{0.05}CeO_z$ after the ammoxidation of benzyl alcohol for 24 h at 423 K ($k = 30-130 \text{ nm}^{-1}$). In (a2) and (b2), black solid lines show the observed data and red dashed lines show the fitted data.

Table S14. Structural Parameters Obtained by the Curve-Fitting Analysis of Cu K-edge EXAFS Fourier Transform (Measured at 298 K) of $Cu_{0.18}Ru_{0.05}CeO_z$ After the Ammoxidation of Benzyl Alcohol for 24 h at 423 K

Sample	Shell	CN	<i>R</i> /nm	ΔE /eV	σ^2 /10 ⁻⁵ nm ²	R _f %	
$Cu_{0.18}Ru_{0.05}CeO_z$	Cu-O	5.5	0.194	2.0	7	0.6	
after reaction		± 1.2	± 0.002	± 3.3	± 2	0.6	
$\frac{1}{2}$ must find as 0.70, $k = 20, 140$ and $R = 0.12, 0.10$ and							

 S_0^2 was fixed as 0.70, k = 30-140 nm⁻¹, R = 0.12-0.19 nm.

Table S15. Structural Parameters Obtained by the Curve-Fitting Analysis of Ru K-edge EXAFS Fourier Transform (Measured at 298 K) of $Cu_{0.18}Ru_{0.05}CeO_z$ After the Ammoxidation of Benzyl Alcohol for 24 h at 423 K

Sample	Shell	CN	<i>R</i> /nm	$\Delta E / eV$	$\sigma^2/10^{-5}~\mathrm{nm}^2$	$R_{\rm f}$ %
$Cu_{0.18}Ru_{0.05}CeO_z$	Ru-O	4.2	0.203	11	6	0.2
after reaction		± 1.5	± 0.003	± 5.4	± 3	0.5

 S_0^2 was fixed as 0.86, k = 30-130 nm⁻¹, R = 0.12-0.19 nm.

Fig. S16. (a) Cu K-edge, (b) Ru K-edge, and (c) Ce L_{III} -edge XANES spectra of $Cu_{0.18}Ru_{0.05}CeO_z$ before (black) and after (red) the ammoxidation of benzyl alcohol under an inert atmosphere for 24 h at 423 K (with 0.32 MPa of NH₃ and 1.0 MPa of N₂).

Table S16. Catalytic Performance of $Cu_{0.18}Ru_{0.05}CeO_z$ and the Control Groups for the Selective Oxidation of Benzyl Alcohol

$\widehat{\mathbb{C}}$	^он	Catalyst 1.0 MPa O ₂) `Н (^`		о ССССИОН
1: Benzyl	alcohol	Toluene 423 K, 24 h	2c: Benzald	lehyde 2e: B	enzyl benzoate	e 2f: Benzoic acid
	Entry	Catalyst	Conversion of 1 %	Selectivity of 2c %	Selectivity of 2e %	Selectivity of 2f %
	1^a	$Cu_{0.18}Ru_{0.05}CeO_z$	>99	5	14	78
	2^b	$Cu_{0.18}CeO_z$	30	81	38	0
	3 ^c	$Ru_{0.04}CeO_z$	>99	7	14	83
	4^d	CeO_z	26	80	0	0
	5	Blank	0	0	0	0

Reaction conditions: **1** (1.93 mmol), toluene (1.0 mL), dodecane (0.07 mL), O₂ (1.0 MPa), 423 K, 24 h. Mass balance was over 0.9. ${}^{a}Cu_{0.18}Ru_{0.05}CeO_{z}$ (74 mg), Ru/Cu/1/dodecane = 1/3.5/100/100. ${}^{b}Cu_{0.18}CeO_{z}$ (77 mg), Cu/1/dodecane = 1/29/29. ${}^{c}Ru_{0.04}CeO_{z}$ (72 mg), Ru/1/dodecane = 1/100/100. ${}^{d}CeO_{z}$ (74 mg), 1/dodecane = 1/1.

Table S17. Catalytic Performance of $Cu_{0.18}Ru_{0.05}CeO_z$ and the Control Groups for the Ammoxidation of Benzaldehyde

2c: Benzaldehyde		 → CN UNH2 UNA2 2a: Benzonitrile 2b: Benzamide 2d: N-Benzylidenebenzylamit → OUTO UNACTOR OUTO UNACTOR → OUTO UNACTOR<						ne
Entry	Catalyst	Conversion of 2c %	Select. of 2a %	Select. of 2b %	Select. of 2d %	Select. of 2e %	Select. of 2f %	
1^a	$Cu_{0.18}Ru_{0.05}CeO_z$	>99	91	9	0	0	0	
2 ^b	$Cu_{0.18}CeO_z$	>99	81	10	0	0	2	
3 ^c	$Ru_{0.04}CeO_z$	97	5	16	0	0	2	
4^d	CeO_z	97	2	18	0	1	0	
5	None	>99	1	19	0	0	0	

Reaction conditions: **2c** (1.96 mmol), toluene (1.0 mL), dodecane (0.07 mL), NH₃ (0.32 MPa), O₂ (1.0 MPa), 423 K, 24 h. Mass balance was over 0.9 except for entries 3, 4, and 5. ${}^{a}Cu_{0.18}Ru_{0.05}CeO_{z}$ (74 mg), Ru/Cu/**2c**/NH₃/dodecane = 1/3.5/100/191/100. ${}^{b}Cu_{0.18}CeO_{z}$ (77 mg), Cu/**2c**/NH₃/dodecane = 1/29/58/29. ${}^{c}Ru_{0.04}CeO_{z}$ (72 mg), Ru/**2c**/NH₃/dodecane = 1/100/191/100. ${}^{d}CeO_{z}$ (74 mg), **2c**/NH₃/dodecane = 1/1.91/1.

Scheme S1. Ammoxidation of benzyl alcohol and the roles of Cu and Ru species in each reaction step.

General setup for the experiments

Fig. S17. Setup for *in situ* QXAFS measurements for H₂ reduction and O₂ oxidation.

References:

- (1) D. R. Mullins, Surf. Sci. Rep., 2015, 70, 42-85.
- (2) G. Yan, Y. Tang, Y. Li, L. Nguyen, T. Sakata, K. Higashi, F. F. Tao and P. Sautet, *Nat. Catal.* 2022, **5**, 119–127.
- (3) S. Ikemoto, X. Huang, S. Muratsugu, S. Nagase, T. Koitaya, H. Matsui, G. Yokota, T. Sudoh, A. Hashimoto, Y. Tan, S. Yamamoto, J. Tang, I. Matsuda, J. Yoshinobu, T. Yokoyama, S. Kusaka, R. Matsuda and M. Tada, *Phys. Chem. Chem. Phys.*, 2019, **21**, 20868–20877.
- (4) Z. Li, K. Werner, K. Qian, R. You, A. Płucienik, A. Jia, L. Wu, L. Zhang, H. Pan, H. Kuhlenbeck, S. Shaikhutdinov, W. Huang and H. J. Freund, *Angew. Chem., Int. Ed.*, 2019, 58, 14686–14693.
- (5) C. Yang, X. Yu, S. Heißler, A. Nefedov, S. Colussi, J. Llorca, A. Trovarelli, Y. Wang and C. Wöll, Angew. Chem., Int. Ed., 2017, 56, 375–379.