Supporting Information

Methyl methacrylate-modified polystyrene microspheres: An effective strategy

to enhance the fluorescence of Eu-complexes

Yuwen Yuan ^a, Yunpeng Wang ^a, Pragati Awasthi ^a, Wenkun Dong ^b, Dong Chen ^b,

Xvsheng Qiao ^{a, c*}, Zhiyu Wang ^a, Guodong Qian ^a and Xianping Fan ^{a, d}

^a State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials

Science and Engineering, Zhejiang University, Hangzhou 310058, China

^b Assure Tech. (Hangzhou) Co., Ltd, Hangzhou 310015, China
 ^c Longmen Laboratory of Luoyang, Luoyang 471000, China
 ^d Ocean Academy, Zhejiang University, Zhoushan 316021, China

* Corresponding Author, E-mail: <u>qiaoxus@zju.edu.cn</u>

St (g)	MMA(g)	$H_2O(mL)$	APS (g)	SDS (g)
4.5	0.5	45	0.20	0.25
3.5	1.5	45	0.20	0.25
2.5	2.5	45	0.20	0.25
3.5	1.5	45	0.20	0.25

Table S1 Different ratios of St and MMA

Table S2 Microspheres with different sodium methacrylate contents

St (g)	MMA (g)	$H_2O(mL)$	APS (g)	Sodium methacrylate	SDS (g)
3.5	1.5	45	0.20	1%mol	0.25
3.5	1.5	45	0.20	2%mol	0.25
3.5	1.5	45	0.20	3%mol	0.25
3.5	1.5	45	0.20	4%mol	0.25

 Table S3 Analysis data comparison among PS-Eu, PSMMA-Eu and commercial microspheres

				Element	Sample	
Samples	$m_0(g)$	V_{0}	Test	concentration	element	W
		(mL)	Elements	of test solution	content	(%)
				(mg/L)	(mg/kg)	
	0.0559	50	Р	0.646	578.10	0.06
DOMMA En	0.0559	50	Р	0.639	571.30	0.06
PSIMIMA-EU	0.0559	50	Eu	6.602	5905.89	0.59
	0.0559	50	Eu	6.611	5914.12	0.59
	0.0548	50	Р	0.320	292.28	0.03
DC En	0.0548	50	Р	0.340	309.80	0.03
PS-Eu	0.0548	50	Eu	0.841	767.20	0.08
	0.0548	50	Eu	0.855	780.33	0.08
	0.0551	50	Р	0.046	41.17	0.004
Commercial	0.0551	50	Р	0.047	422.03	0.004
microspheres	0.0551	50	Eu	1.582	1342.02	0.13
	0.0551	50	Eu	1.564	1399.46	0.14

Samples	ng/mL	Т	T-AV	С	C-AV	T/C	T/C- AV	T/C- CV
	0	27180	28088	28976	29626	0.9380	0.947	
		25686		27551		0.9323		
		26575		27833		0.9548		1.33%
		29647		31385		0.9446		
		31352		32388		0.9680		
		14143		34374		0.4114		
		12480		31396		0.3975		
	0.5	12177	13635	32916	34957	0.3699	0.390	8.62%
		16605		38817		0.4272		
		12768		37227		0.3430		
		7972		34892		0.2285		
		11017		42104		0.2617		
	1	8329	9114	34448	37832	0.2418	0.240	5.37%
		8795		37044		0.2374		
		9456		40673		0.2325		
	5	3902	3945	37921		0.0982		
		3719		39770		0.0934	0.093	7.46%
		3898		45284	42425	0.0861		
		3554		41366		0.0859		
		4653		45984		0.1012		
PSMMA-Eu		2890		52377		0.0552		
		2942		44204		0.0666		
	10	2841	2786	47490	46504	0.0598	0.060	6.84%
		2635		43929		0.0600		
		2621		44519		0.0589		
		2165		48036		0.0451		
		1995		49950		0.0399		
	20	1567	1809	39560	44943	0.0396	0.040	7.16%
		1806		47348		0.0381		
	15	1514		39819		0.0380		
	906	906		47946		0.0189		
		839	991	44174	46341	0.0190	0.021	15.96%
	50 1296 896	1296		48706		0.0266		
		896		46603		0.0192		
		1016		44277		0.0230		
		553		49670		0.111		
		668		48189		0.0139		
	100	614	619	45870	49621	0.0134	0.013	8.81%
	100	664	~ - /	55189		0.0120		0.01/0
		598		49189		0.0121		

Table S4 Quantitative detection of LFIAs based on PSMMA- Eu

Method	LOD (ng/ mL)
LFIA based on fluorescent PSMMA-Eu	0.10
LFIA based on commercial microspheres	1.00

Table S5 Comparison between the detection limits (LODs) of LFIAs (lateral flowimmunoassay) based on fluorescent PSMMA-Eu and commercial microspheres.

Fig. S1 Photographs of (a) Eu $(TTA)_3(TPPO)_2$ and (b) PSMMA-Eu under 365nm irradiation.

Fig. S2 DLS images of PSMMA-Eu microsphere with different ratios of MMA

Fig. S3 Enlarged SEM(a) and HRTEM(b) of a single fluorescent microsphere of PSMMA

Fig. S4 Element distribution scanning map of PS-Eu(a)-d), PAMMA-Eu(e-h) and commercial microspheres (i-l) (Scale bar = 500nm)

Fig. S5 (a-b) Emission and excitation spectra, (c) DLS images and (d) Fluorescence attenuation spectra of PSMMA-Eu and commercial microspheres.