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sulfur 2p photoemission from CS2 and SF6 – theoretical
treatment and application to photoelectron recoil.
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Introduction

We treat the combined effect of spin-orbit interaction and molec-
ular field in the product basis of orbital angular momentum pro-
jection m and spin angular momentum projection µ, which con-
stitutes an atomic-problem-in-a-molecule approximation for pho-
toemission. Because the molecular field mixes S 2p orbital states
in the molecular frame of reference, we derive the splitting and
the formed eigenstates i

ψ
mol
i = ∑

m,µ
c(i)mµ Y m

1 (r̂mol)2p(r)︸ ︷︷ ︸
=:φm(rmol)

χ
mol
µ (1)

in this coordinate system, indicated by notion mol. We use r̂ = r/r
and r = |r| for brevity. Next, using atomic units and following
Schmidt1, we derive the orientation-dependent differential pho-
toemission cross section for solid angle element dΩ in the direc-
tion of the wave vector of the detected electron k

dσi

dΩ
(R) = 4π

2
αkω ∑

µ

|
〈

ψ
(−)
kµ

|e · r|ψmol
i

〉
|2, (2)

where ω is the photon energy and α the fine structure constant.
In the experiment, the polarization e of the X-ray beam is parallel
to k. We use this direction for the z-axis of the laboratory frame of
reference and transform the states ψmol

i to this coordinate system
for calculations. In equation (2) spin projection µ of the detected
electron is summed over for spin-insensitive detection. Differen-
tial cross section (2) depends on the molecular orientation, char-
acterized by rotation R, which transforms the laboratory frame of
reference into the molecular one. In model using the atomic ba-
sis, the obtained coefficients c(i)mµ suffice to define the molecular-
orientation-dependence of the cross section for state i together
with the Wigner matrix D(1)(R).
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Eigenstates in the molecular frame
Whereas the spin-orbit operator for a 2p electron is the same in
all frames of reference

ĤSO = ξ

[
∑
m,µ

mµa†
mµ amµ +

1√
2

0

∑
m=−1

(a†
m+1,−1/2

am,1/2 +a†
m,1/2

am+1,−1/2)

]
,

the molecular field operator Ĥmol
MF depends on the system and its

frame of reference given by R. For S 2p of the CS2 molecule we
use

Ĥmol
MF = γ ∑

m,µ
(−1)|m|+1a†

mµ amµ .

In the above, a† and a are the creation and annihilation operators
in the molecular frame. Parameters ξ and γ are empirical coef-
ficients for the interaction strength. The matrix presentation of
these operators for CS2 read in the (m,µ) basis, ordered as (-1,-
1/2), (-1,+1/2), (0,-1/2), (0,+1/2), (1,-1/2), (1,+1/2)

Hmol
SO = ξ



1/2 0 0 0 0 0
0 −1/2 1/

√
2 0 0 0

0 1/
√

2 0 0 0 0
0 0 0 0 1/

√
2 0

0 0 0 1/
√

2 −1/2 0
0 0 0 0 0 1/2


and

Hmol
MF = γ



1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

For γ > 0, the latter operator shifts the m =±1 components up in
energy by γ and the m = 0 down in energy by γ.

Finding eigenvectors and eigenvalues of the effective interac-
tion Hamiltonian matrix Hmol = Hmol

SO +Hmol
MF results in eigenener-

gies and respective eigenstates (coefficients c(i)mµ ) in the molecular
frame. By fitting the spin-orbit splitting for SF6 with γ = 0, we ob-
tained ξ = 0.806 eV, which we consider a constant in terms of
chemical environment. For CS2 further fitting with this ξ value
fixed resulted γ = 0.102 eV.

We checked the results of this semiempirical method with those
of Kosugi and co-corkers2 for the OCS molecule with the 2p3/2
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splitting of 0.145 eV. We obtained γ ≈ 0.117 eV by fitting, and eval-
uated the square of the respective nonzero expension coefficient
c0µ . These σ -character values of 0.426 (states labeled 2p1/2,±1/2),
0.574 (states labeled 2p3/2,±1/2) and 0 (states labeled 2p3/2,±3/2)
match well with those of Kosugi et al. who obtained 0.433, 0.567
and 0, respectively2. For the pure spin-orbit-coupled case these
numbers are 1/3, 2/3 and 0, respectively.

Cross section as a function of molecular orientation

An orbital or a spin state in the molecular frame can be presented
as a linear combination of states in the laboratory frame using
the appropriate Wigner D( j) matrix for rotation R, which trans-
forms the laboratory frame basis vectors to those of the molecular
frame1. In the direct product basis this transformation follows

φm(rmol)χ
mol
µ = D̂(1)(R)φm(r)D̂(1/2)(R)χµ .

In particular, for a spin state

χ
mol
µ = ∑

µ ′
χµ ′D(1/2)

µ ′µ (R),

and for the spherical harmonics of the p orbitals

Y m
1 (r̂mol) = ∑

m′
Y m′

1 (r̂)D(1)
m′m(R).

We evaluate the transition matrix elements in the laboratory
frame, in which the polarization vector is oriented along the z-
axis. This choice yields a convenient form e · r = ẑ · r = rz = z =√

4π/3Y 0
1 (r̂)r. In this particular experiment, electron detection

takes also place in the direction of the z-axis to yield the wave-
function for the emitted electron1

ψ
(−)
k,µ (r) =

1√
k
∑
l,q

ile−i∆lY q∗
l (k̂)Y q

l (r̂)Rεl(r)χµ ,

where k = kẑ (k = |k|) is the wave vector with kinetic energy
ε = k2/2, and the phase shift ∆l originates from the shape of the
potential.

The transition operator and electron detection in the experi-
ment are spin-independent which makes each transition matrix
element decompose to a spatial part and a spin part〈

ψ
(−)
kẑ,µ |z⊗1|ψ

mol
i

〉
= ∑

m,µ1

c(i)mµ1

〈
ψ
(−)
kẑ |z|φ mol

m

〉
︸ ︷︷ ︸

=:Tm

〈
χµ |1|χmol

µ1

〉

= ∑
m

Tm ∑
µ2,µ1

c(i)mµ1 D(1/2)
µ1µ2

〈
χµ |χµ2

〉
,

where Tm is used for the spatial part. We drop χ in the notation for
laboratory-frame spin ket and carry out the summation over the
two possible spin projections µ in (2) to describe the cross section

in a spin-insensitive experiment. With the prefactor C1 = 4π2αkω

dσi

dΩ
(R) = C1 ∑

µ

|
〈

ψ
(−)
kẑ,µ |z⊗1|ψ

mol
i

〉
|2

= C1 ∑
µ

|∑
m

Tm ∑
µ1,µ2

c(i)mµ1 D(1/2)
µ2µ1(R)⟨µ|µ2⟩ |2

= C1 ∑
µ

(
∑
m

Tm ∑
µ2,µ1

c(i)mµ1 D(1/2)
µ2µ1(R)⟨µ|µ2⟩

)∗

×

∑
m′

T ′
m ∑

µ ′
2,µ

′
1

c(i)m′µ ′
1
D(1/2)

µ ′
2µ ′

1
(R)
〈
µ|µ ′

2
〉

= C1 ∑
m,m′

T ∗
mTm′ ∑

µ1,µ ′
1

c(i)∗mµ1 b(i)m′µ ′
1

∑
µ2,µ ′

2

D(1/2)∗
µ2µ1 (R)D

(1/2)
µ ′

2µ ′
1
(R)

×∑
µ

⟨µ2|µ⟩
〈
µ|µ ′

2
〉

︸ ︷︷ ︸
=δ

µ2µ ′2

= C1 ∑
m,m′

T ∗
mTm′ ∑

µ1,µ ′
1

c(i)∗mµ1 c(i)m′µ ′
1
∑
µ2

D(1/2)
µ1µ2(R

−1)D(1/2)
µ2µ ′

1
(R)︸ ︷︷ ︸

=δ
µ1µ ′1

= C1 ∑
µ1

∑
m,m′

T ∗
mTm′c(i)∗mµ1 c(i)m′µ1

= C1 ∑
µ1

(
∑
m

T ∗
mc(i)∗mµ1

)(
∑
m′

Tm′c(i)m′µ1

)

= C1 ∑
µ

|∑
m

Tmc(i)mµ |2.

Previous considerations yield spatial transition matrix element

Tm =
〈

ψ
(−)
kẑ |z|φ mol

m

〉
=

√
4π

3k ∑
l,q,m′

i−lei∆l

∫
R∗

ε,l(r)2p(r)r3dr

× Y q
l (ẑ)

∫
Y q∗

l (r̂)Y 0
1 (r̂)Y

m′

1 (r̂)dr̂︸ ︷︷ ︸
=:Gl

qm′

× D(1)
m′m(R).

In this equation it is necessary that m′ = q and l = 0,2 for the
Gaunt integral Gl

qm′ to be nonzero. Moreover, only q = 0 gives a
nonzero Y q

l (ẑ). Thus

Tm =
D(1)

0m(R)√
k

∑
l=0,2

(2l +1)

√
3

4π

(
1 1 l
0 0 0

)2

i−lei∆l

∫
R∗

ε,l(r)2p(r)r3dr︸ ︷︷ ︸
=:C2

,

where the dependence on rotation R is contained by the single
Wigner matrix element D(1)

0m(R). The summation over l gives an
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energy-dependent factor, marked here C2, that accounts for both
s-waves and d-waves but is independent of R, m, µ and i. We
note that the initial state splitting is negligible compared to ε,
and therefore it is reasonable to use the same partial-wave radial
functions for each transition.

Based on these calculations, the R-dependent differential cross
section in this particular experimental geometry reads

dσi

dΩ
(R) = 4π

2
αω ∑

µ

|∑
m

C2D(1)
0m(R)c

(i)
mµ |2. (3)

Furthermore, owing to the aforementioned independencies of C2,
the probability of electron detection from one-electron state i of a
molecule oriented by R is proportional to

σ
rel
i (R) = ∑

µ

|∑
m

D(1)
0m(R)c

(i)
mµ |2. (4)

This relative orientational function measures the projection of the
initial state i on the Y 0

1 (r̂) in laboratory frame of reference.
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