Supplementary materials

Computational study of the post-transition state dynamics for the OH + CH_3OH reaction probed by photodetachment of the $CH_3O^-(H_2O)$ anion

Tatsuhiro Murakami $^{*,\dagger,1,\,2}$ and Toshiyuki Takayanagi ‡,1

¹Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
²Department of Materials & Life Sciences, Faculty of Science & Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan

Contents

S1 Figures and Tables for the supporting information

S2

^{*}Corresponding author

[†]E-mail: murakamit@mail.saitama-u.ac.jp, ORCID: 0000-0001-8904-8673

[‡]E-mail: tako@mail.saitama-u.ac.jp, ORCID:0000-0003-0563-9236

S1 Figures and Tables for the supporting information

Figure S1: The potential energy fitted with respect to ω B97XD/AVTZ energy

Figure S2: Comparison of the equilibrium geometry of the $CH_3O^-(H_2O)$ anion. The geometric parameters in black, red, blue, and green correspond to the fitted PES, $\omega B97XD/aug-cc-pVTZ(AVTZ)$ outcomes, and the CCSD(T) results taken from Ref. 11, respectively.

Figure S3: Potential energy curves of the MSA2 PES(black line) and the ω B97XD/aug-cc-pVTZ(AVTZ) PES (green line) along hydrogen transfer mode, Q_{14}

Figure S4: Convergence analysis of the number of beads at the temperature T = 100 K. Here, E denotes the internal energy of the anion system, while E_{ZPE}^{a} represents the zero-point vibrational energy.

Figure S5: Time-dependent probability densities of (a) R_1 , (c) R_3 , and (e) θ at t=0 and 500 fs for classical MD, and (b) R_1 , (d) R_3 , and (f) θ at t=0 and 500 fs for RPMD on PES1.

Figure S6: Harmonic potential curve (upper panel) and probability density of the zero-point wave function $|\Psi_0|^2$ for bending motion computed using the ω B97XD/aug-cc-pVTZ level of theory (lower panel), with bending angles at key geometries

Table S1: Relative energies (in eV) for the $CH_3O^-(H_2O)$ anion equilibrium structure, $CH_3OH + OH^$ and $CH_3O^- + H_2O$ fragments calculated by the $\omega B97XD/AVTZ$ and the mHEAT-345(Q) methods. The latter is based on the high-accuracy extrapolated *ab initio* thermochemistry (HEAT) model, as used in Ref. 11. The potential energy of the equilibrium structure is set to zero.

method	$CH_3OH + OH^-$	$CH_3O^-(H_2O)$	$CH_3O^- + H_2O$
ωB97XD	1.363	0.000	1.071
mHEAT-345(Q)	1.35	0.00	1.00

Table S2: Comparison of harmonic vibrational frequencies (in cm⁻¹) for the equilibrium structure of the CH₃O⁻(H₂O) anion, computed using the fitted MSA2 PES function, ω B97XD/AVTZ, and fc-CCSD(T)/ANO1 as reported in Ref. 11

\tilde{v}_{lpha}	MSA2 PES	ωB97XD	CCSD(T)
\tilde{v}_1	54.3	43.8	76.5
\tilde{v}_2	92.1	111.2	106.6
\tilde{v}_3	141.7	146.7	149.8
\tilde{v}_4	350.5	350.6	379.7
\tilde{v}_5	603.0	559.9	567.4
\tilde{v}_6	1151.5	1153.5	1144.0
$ ilde{ u}_7$	1176.3	1177.9	1184.7
$ ilde{ u}_8$	1181.2	1181.2	1186.8
\tilde{v}_9	1313.7	1278.0	1325.7
\tilde{v}_{10}	1459.6	1460.4	1469.0
\tilde{v}_{11}	1474.2	1470.3	1484.6
\tilde{v}_{12}	1480.3	1477.9	1494.8
\tilde{v}_{13}	1697.0	1679.1	1721.2
\tilde{v}_{14}	2030.3	2112.0	2179.2
\tilde{v}_{15}	2717.9	2706.9	2708.5
\tilde{v}_{16}	2748.3	2736.2	2738.1
$ ilde{v}_{17}$	2784.2	2776.5	2782.3
\tilde{v}_{18}	3939.9	3932.4	3869.2

Table S3: Optimized geometry (in xyz format) of the $CH_3O^-(H_2O)$ anion obtained using the MSA2 PES function

1	8			
2	MSA2	PES		
3	Н	-2.06358100	0.38414200	0.90022100
4	Н	-0.93682300	1.35061100	-0.06453600
5	Н	-2.11364200	0.29976900	-0.86560200
6	Н	2.04306600	0.28843500	0.81841600
7	Н	0.84208400	-0.20543700	-0.08078600
8	С	-1.40351100	0.33828300	-0.00231300
9	0	-0.50829600	-0.67897500	0.02020700
10	0	1.83954100	0.16057300	-0.10693700

Table S4: Optimized geometry (xyz format) of the $CH_3O^-(H_2O)$ anion calculated by the $\omega B97XD/AVTZ$ level

1	5	3		
2	wB97	XD/AVTZ		
3	С	-1.413488	0.334595	0.002951
4	0	-0.510128	-0.674738	0.010885
5	Н	-2.151495	0.289333	0.842552
6	Н	-0.958214	1.351600	0.079158
7	Н	-2.045405	0.377341	-0.919978
8	Н	0.855910	-0.191656	-0.093030
9	0	1.849097	0.169213	-0.104796
10	Н	2.068378	0.210020	0.824882

Table S5: Optimized geometry (in xyz format) of the TS structure obtained from calculations using PES1

I	8			
2	PES1 TS			
3	С	-1.521974183487	-0.281836043022	0.000014212562
4	0	-0.384039621394	0.569809798126	-0.000043119817
5	Н	-2.436900051327	0.307785505085	0.000827286400
6	Н	-1.518949370792	-0.916935219470	-0.883999696368
7	Н	-1.518051930528	-0.917730097457	0.883391078140
8	Н	0.697939310835	0.221379086905	-0.000178673717
9	0	1.878117292047	-0.065758580358	-0.000318570178
10	Н	1.955202554646	-1.035903449809	0.000287482978

Table S6: Optimized geometry (in xyz format) of the RC structure obtained from calculations using PES1

1	8			
2	PES1 RC			
3	С	-2.060474609404	-0.208374488638	-0.001225384932
4	0	-0.883601392144	0.587853332970	-0.005805404687
5	Н	-2.946720685445	0.424428653558	-0.015810301564
6	Н	-2.083234173041	-0.856738937206	-0.876019979427
7	Н	-2.093836093060	-0.830609344396	0.891946821107
8	Н	-0.041941582257	0.127757780296	0.006282285329
9	0	2.925500895811	-0.227156281087	0.005657302264
10	Н	1.975498459490	-0.020785212240	0.005466635479

Table S7: Optimized geometry (in xyz format) of the PC structure obtained from calculations using PES1

2 PES1 PC	0.137648880576	0.0000000000000000000000000000000000000
2 1 201 10	0.137648880576	0 0000070075
3 C -2.296073114156	0110101000010	-0.033906780875
4 0 -0.919139033148	0.107242536099	0.074211607198
5 H -2.589459749023	0.501717104649	-1.009121270912
6 Н -2.706547592957	-0.853805983479	0.100955790045
7 Н -2.718547569102	0.789935920896	0.718144371674
8 H 3.293513683933	-0.534328473741	-0.264930043893
9 0 2.963819835459	-0.068245370524	0.521647846473
10 H 2.000291183862	-0.024340768648	0.397236884644

Table S8: Optimized geometry (in xyz format) of the TS structure obtained from calculations using PES2

I	8			
2	PES2 TS			
3	С	-1.416748129657	-0.284225659340	-0.060221351227
4	0	-0.313991127701	0.053226519467	0.766862521567
5	Н	-2.248638927592	0.338443343701	0.272796498686
6	Н	-1.195215486678	-0.062161191832	-1.104360866585
7	Н	-1.667646646501	-1.332779391054	0.033735985540
8	Н	0.624090904851	-0.595583446566	0.539999801373
9	0	1.600238877906	-0.596979043701	-0.205762621176
10	Н	1.769254535375	0.360869869328	-0.243069968180

1	8			
2	PES2 RC			
3	С	-1.832271739778	-0.014983016841	0.369198571322
4	0	-0.458400947439	-0.333422253350	0.194588088859
5	Н	-2.079271895168	0.810715878744	-0.290104775768
6	Н	-2.438128727461	-0.882009183468	0.120327653608
7	Н	-1.997894971934	0.277434622940	1.397475623130
8	Н	-0.229678929765	-1.056190792971	0.750356036480
9	0	2.229230345183	-0.429503536257	-0.100461857624
10	Н	1.283724944924	-0.168548588597	-0.180771533557

Table S9: Optimized geometry (in xyz format) of the RC structure obtained from calculations using PES2

Table S10: Optimized geometry (in xyz format) of the PC structure obtained from calculations using PES2

1	8			
2	PES2 PC			
3	С	-0.750386086034	-0.273466094211	0.317323945512
4	0	-1.600819920314	0.430927836592	1.060816865367
5	Н	-0.999789076573	-0.238054130085	-0.745729250406
6	Н	0.303419750104	0.103362354742	0.461976627968
7	Н	-0.794762710336	-1.364073113146	0.633655183661
8	Н	1.237597011336	-0.883442282662	-0.354411311432
9	0	2.071177274127	-0.810481547796	-0.769132438502
10	Н	2.549893378220	-1.643070262896	-0.715937892471