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Data

In the following, additional information on the pre-processing of the experimental data, the

selection of molecular models, and the final assembly of the data basis is provided.

Experimental Data

At the time of access, the Dortmund Data Bank1 (DDB) provided approximately 65 000

Henry’s law constants for 366 solutes and 1106 solvents at various temperatures. In a pre-

processing, the data was consolidated as proposed in one of our earlier works:2 if multiple

data points were available at the same temperature, the median of all these data points

within a range of ±0.5K, e.g. 298.15 ± 0.5 K, was taken. This step is illustrated for the

binary system acetylene - acetone in Fig. 1.
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Figure 1: Visualization of the data consolidation for the binary system acetylene - acetone.
Left: the original experimental data sets corresponding to the following authors: Bodor
et al. 3 ( ); Bodor et al. 4 ( ); Eck 5 ( ); Hannaert et al. 6 ( ); Hölemann and Hasselmann 7 ( );
Horiuti 8 ( ); Kvasenkov and Shleinikov 9 ( ); Otsuka and Takada 10 ( ); Shenderei and
Ivanovskii 11 ( ); Usyukin and Shleinikov 12 ( ). Right: consolidated experimental data points
( ) after pre-processing.

As the binary interaction parameter is assumed to be temperature-independent, only

one experimental Henry’s law constant is required for fitting. For a large share of the

binary systems, the experimental data set contains Henry’s law constants at 298.15K. Thus,

if available, data points at this temperature were chosen. This comes in handy for the

simulations, as the Henry’s law constants for different solutes in the same solvent at the

same temperature can be obtained in a single run when Widom’s test particle method13

is used to sample the chemical potential. For the other binary systems, data points at

temperatures close to 298.15K were chosen.

Molecular Models

At the time of access, the MolMod database14 contained 164 molecular models for 124 dif-

ferent molecules. For the molecules for which more than one molecular model was available,

a preliminary study was conducted to find out which model is best suited for the prediction

of Henry’s law constants. All binary systems of this molecular model for which experimen-
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tal data on the Henry’s law constant was available were simulated. For this purpose, the

molecular model that gave the best predictions (based on the MAE of ln (Hij/kPa)) was

selected.

Final Data Basis

Molecular simulations were performed for all binary systems in the intersection of the ex-

perimental data and molecular models (as described above). Because Widom’s test particle

method,13 which was used for the calculation of Hij, is prone to errors when dealing with

large test particles and/or a high-density solvent, the result of every simulation was manually

checked for convergence. All questionable and faulty results were subsequently omitted (and

with them the respective experimental data point). For this reason, also water dropped out.

Furthermore, components for which only one data point was remaining were discarded, since

a minimum of two data points per component are required for the leave-one-out analysis

that was used for the assessment of the results (see section Matrix Completion Method in

the paper). The final data basis includes 213 binary systems consisting of 34 solutes and 15

solvents. The corresponding molecular models are listed in Tab. 1, which also assigns them

unique IDs for reference.

Molecular Simulation

In this work, molecular dynamics (MD) simulations were carried out with 1000 solvent

molecules. First, 1024 Monte-Carlo relaxation loops were performed for an initial energy

minimisation, followed by 10 000 time steps in the NV T ensemble and 50 000 time steps in

the NpT ensemble for equilibration. Thereafter, 1 000 000 time steps in the NpT ensemble

were carried out for the data production, during which 5000 molecules of each considered

solute were inserted to calculate Henry’s law constants every 1000 time steps. The center of

mass cut-off mode was chosen with a cut-off radius of 15.05 Å. Long-range LJ interactions
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were accounted for with the formulations proposed by Lustig.15 The reaction field method16

was employed for the longe-range electrostatic interactions. To solve Newton’s equation of

motion, the Gear predictor-corrector integrator was used. The time step was ∆t = 1.92 fs.

To allow for a quick equilibration, the density of the solvent was initialised according to

the correlation

ρSj,liq/
(
mol l−1

)
= a2 · (T/K)2 + a1 · (T/K) + a0 (1)

with the parameters given in Tab. 2. The pressure in the NpT steps was set to 105% of the

pressure resulting from the Antoine’s equation

log10
(
pSj /Pa

)
= A− B

(T/K) + C
(2)

for the respective solvent. The parameters are again listed in Tab. 2. Both sets of parameters

of Eq. (1) and (2) reported in Tab. 1 were determined in the present work from a fit to

molecular simulation data from the original publications of the molecular models given in

Tab. 1.
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Table 1: List of the molecular models that were used for the molecular simulations in this
work.

Name CAS-Number Reference Solute-ID Solvent-ID

1,1-Difluoroethane 75-37-6 17 11 -

1,1-Dimethylhydrazine 57-14-7 18 - 11

Acetone 67-64-1 19 - 2

Acetonitrile 75-05-8 20 - 1

Acetylene 74-86-2 21 27 -

Ammonia 7664-41-7 22 4 -

Argon 7440-37-1 21 21 -

Benzene 71-43-2 23 - 6

Carbon dioxide 124-38-9 24 13 -

Carbon disulfide 75-15-0 21 3 -

Carbon monoxide 630-08-0 17 20 -

Carbon tetrachloride 56-23-5 23 - 9

Carbon tetrafluoride 75-73-0 21 12 -

Chlorine 7782-50-5 25 22 -

Chlorodifluoromethane 75-45-6 17 5 -

Chlorotrifluoromethane 75-72-9 17 8 -

Cyclohexane 110-82-7 26 - 7

Cyclohexanol 108-93-0 27 - 13

Cyclohexanone 108-94-1 28 - 12

Cyclopropane 75-19-4 29 34 -

Dichlorodifluoromethane 75-71-8 17 6 -

Difluoromethane 75-10-5 17 29 -

Ethane 74-84-0 25 17 -

Ethanol 64-17-5 30 1 3

Ethylene 74-85-1 25 16 -

Ethylene oxide 75-21-8 31 - 4

Fluoromethane 593-53-3 17 33 -

Formic acid 64-18-6 32 - 5

Hydrogen 1333-74-0 33 1 26 -

1The publication lists several models for hydrogen. Here, model A was used.
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Table 1 (cont.): List of the molecular models that were used for the molecular simulations
in this work.

Name CAS-Number Reference Solute-ID Solvent-ID

Hydrogen chloride 7647-01-0 34 2 -

Isobutane 75-28-5 26 7 -

Isopropanol 67-63-0 35 - 8

Krypton 7439-90-9 21 23 -

Methane 74-82-8 21 14 -

Methyl chloride 74-87-3 17 10 -

Methyl ether 115-10-6 26 9 -

Methylhydrazine 60-34-4 18 - 15

Neon 7440-01-9 21 30 -

Nitrogen 7727-37-9 25 19 -

Nitrous oxide 10024-97-2 36 2 24 -

Octamethylcyclotetrasiloxane 556-67-2 37 - 14

Oxygen 7782-44-7 25 15 -

Propylene 115-07-1 21 18 -

Sulfur dioxide 7446-09-5 26 32 -

Sulfur hexafluoride 2551-62-4 21 31 -

Toluene 108-88-3 34 - 10

Trifluoromethane 75-46-7 17 28 -

Xenon 7440-63-3 21 25 -

2The publication lists several models for nitrous oxide. Here, the 2CLJQ model was used.

6



Ta
bl

e
2:

P
ar

am
et

er
s

of
E

q.
(1

)
an

d
E

q.
(2

)
fo

r
al

ls
tu

di
ed

so
lv

en
ts

ob
ta

in
ed

fr
om

m
ol

ec
ul

ar
si

m
ul

at
io

n
da

ta
of

th
e

pu
re

so
lv

en
ts

re
po

rt
ed

in
th

e
or

ig
in

al
pu

bl
ic

at
io

ns
,s

ee
Ta

b.
1.

N
am

e
So

lv
en

t-
ID

a
2

a
1

a
0

A
B

C

1,
1-

D
im

et
hy

lh
yd

ra
zi

ne
11

-6
.9

4e
-0

5
3.

32
e-

02
9.

16
e+

00
9.

89
16

44
.0

8
1.

47
A

ce
to

ne
2

-8
.9

5e
-0

5
4.

09
e-

02
9.

23
e+

00
9.

17
11

39
.4

6
-5

5.
94

A
ce

to
ni

tr
ile

1
-8

.2
0e

-0
5

2.
92

e-
02

1.
76

e+
01

9.
70

15
44

.0
3

-3
3.

58
B

en
ze

ne
6

-4
.4

7e
-0

5
2.

09
e-

02
8.

50
e+

00
10

.0
4

20
84

.6
8

63
.7

7
C

ar
bo

n
te

tr
ac

hl
or

id
e

9
-2

.4
0e

-0
5

2.
52

e-
03

1.
38

e+
01

8.
55

85
2.

86
-1

16
.0

8
C

yc
lo

he
xa

ne
7

-4
.8

5e
-0

5
2.

67
e-

02
5.

07
e+

00
9.

04
12

37
.3

9
-4

6.
72

C
yc

lo
he

xa
no

l
13

-2
.4

3e
-0

5
1.

05
e-

02
8.

29
e+

00
8.

61
96

9.
44

-1
66

.2
5

C
yc

lo
he

xa
no

ne
12

-1
.6

9e
-0

5
4.

65
e-

03
9.

39
e+

00
9.

37
16

74
.3

1
-4

5.
97

E
th

an
ol

3
-7

.4
6e

-0
5

2.
74

e-
02

1.
57

e+
01

9.
97

14
65

.0
2

-5
6.

56
E

th
yl

en
e

ox
id

e
4

-9
.1

6e
-0

5
2.

23
e-

02
2.

13
e+

01
9.

38
11

27
.5

7
-2

5.
33

Fo
rm

ic
ac

id
5

-7
.5

7e
-0

5
2.

87
e-

02
2.

40
e+

01
10

.2
9

22
14

.9
0

46
.1

5
Is

op
ro

pa
no

l
8

-6
.2

2e
-0

5
2.

28
e-

02
1.

19
e+

01
10

.4
5

17
71

.5
0

-3
5.

07
M

et
hy

lh
yd

ra
zi

ne
15

-2
.5

7e
-0

5
-1

.5
4e

-0
3

2.
16

e+
01

9.
42

14
18

.8
4

-4
3.

64
O

ct
am

et
hy

lc
yc

lo
te

tr
as

ilo
xa

ne
14

-6
.6

4e
-0

6
1.

02
e-

03
3.

47
e+

00
8.

87
13

59
.5

7
-9

9.
07

To
lu

en
e

10
-1

.6
4e

-0
5

3.
65

e-
04

1.
08

e+
01

9.
21

14
13

.3
8

-4
8.

46

7



Validity of the Linear Correlation

For a substantial number of investigated systems, the experimental binary interaction param-

eter ξexpij lies outside of the interval [0.95,1.05] in which molecular simulations were carried

out. Especially systems with the solute Neon or Hydrogen exhibit extreme values for ξexpij .

We therefore performed additional molecular simulations for all 16 systems containing either

of these solutes, this time using ξij = 0.5 and ξij = 1.5. We then compared the obtained

Henry’s law constants with those predicted by the linear correlation, cf. Eq. (6) in the

manuscript, which was fitted to three simulation data points obtained from simulations with

ξij = 0.95, 1.00, and 1.05. On average, the resulting difference in ln(Hij/kPa) amounts to

0.18 for ξij = 0.5 and 0.09 for ξij = 1.5. Considering that in our previous work,2 we found

a mean standard deviation of about 0.1 for the reported experimental values of ln(Hij/kPa)

in the literature, these differences are acceptable. In addition, more than 90% of the values

for ξexpij lie in the interval [0.8,1.2], for which the extrapolation errors are much smaller.

Fitted Binary Interaction Parameters

The fitted binary interaction parameters ξexpij for all 213 binary systems investigated in this

work are reported in the machine-readable file xi_exp.csv available with the ESI. The solute

(rows) and solvent (columns) IDs refer to those defined in Tab. 1.

Predicted Binary Interaction Parameters

The completed matrix of binary interaction parameters ξpred,fullij and their standard devia-

tions are depicted in Fig. 2 and reported in the machine-readable files xi_pred_full.csv and

std_xi_pred_full.csv available with the ESI. The values are inferred with the MCM that

was trained on all fitted binary interaction parameters ξexpij . The solute (rows) and solvent

(columns) IDs refer to those defined in Tab. 1.
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Figure 2: Heatmaps of the binary interaction parameters ξpredij predicted with the MCM
trained on all ξexpij values. Left: mean values. Right: standard deviations. Solute and
solvent models are sorted by their ID as listed in Tab. 1.
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Model Uncertainty

The values predicted from the MCM are the mean of 1000 samples drawn from the posterior,

i.e., the probability distribution of the model parameters after the training. This way, the

standard deviation is obtained for each parameter, capturing the model uncertainty in the

parameters of both the solute and the solvent.

Fig. 3 helps to understand how the model uncertainty depends on the number of available

data points in the training data. The top panel shows the uncertainty of ξpredij as a function

of the number of available training data points for a certain solute (i.e., systems in the same

row of the matrix). The bottom panel shows the same but for the solvents (i.e., systems

in the same column of the matrix). As expected, both plots indicate that, on average, an

increase in the number of training data points leads to a decrease in the model uncertainty.

Furthermore, we have investigated how the model uncertainty differs between the predic-

tions made with the model trained by LOO (where the predicted data point is not part of

the training set) and the model trained on the complete data set (where the predicted data

point is part of the training set). For 209 of the 213 data points, the standard deviation of

the ’full’ model is lower than that of the LOO model. On average, the uncertainty decreases

by 18%.

In Fig. 4, we show how the difference between the predicted ξpredij and the experimental

ξexpij , i.e., the prediction error, depends on the number of training data points in similar

plots as those shown in Fig. 3. Here, similar trends can be observed with, on average, higher

numbers of training data points, leading to decreasing prediction errors. However, the trends

are not as significant as in Fig. 3, indicating that the MCM also performs well in situations

with few training data.
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Figure 3: Influence of the number of training data points Nexp on the standard deviation
describing the model uncertainty of ξpred from the LOO-trained model. The open circles
show the standard deviation for individual systems, the red dots mark the median of the
standard deviations at a specific Nexp. Top panel: solutes. Bottom panel: solvents. Note
that for clarity, values higher than 0.2 are cut-off.
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Figure 4: Influence of the number of training data points Nexp on the absolute difference
between the predicted ξpredij from the LOO-trained model and the experimental ξexpij . The
open circles show the absolute difference for individual systems, the red dots mark the median
of the absolute differences at a specific Nexp. Top panel: solutes. Bottom panel: solvents.
Note that for clarity, values higher than 0.2 are cut-off.
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Application to Molecular Simulation

In Fig. 5 molecular simulation results of temperature-dependent Henry’s law constants are

shown for four binary systems and compared to consolidated experimental data. The plot

includes results using ξexpij , ξpredij and ξpred,fullij .

2.8 3 3.2 3.4 3.6 3.8

1000K = T

11.1

11.2

11.3

11.4

11.5

11.6

11.7

ln
(H

ij
=
k
P
a)

Methane in Ethanol

3.2 3.4 3.6 3.8 4

1000K = T

11.2

11.4

11.6

11.8

12

ln
(H

ij
=
k
P
a)

Oxygen in Acetone

2.6 2.8 3 3.2 3.4 3.6

1000K = T

12

12.5

13

13.5

ln
(H

ij
=
k
P
a
)

Hydrogen in Benzene

3.2 3.4 3.6 3.8 4

1000K = T

5.5

6

6.5

7

7.5

8

8.5

9

ln
(H

ij
=
k
P
a)

Acetylene in Acetone

Figure 5: Results of molecular simulations of temperature-dependent Henry’s law constants
in four binary systems using ξpredij ( , dash-dotted) predicted by the MCM with LOO and
ξpred,fullij ( , dotted) predicted by the MCM trained on all ξexpij . Error bars of the statistical
uncertainty of molecular simulations are omitted for clarity. Lines are guides for the eye.
Axis limits are chosen as in Fig. 5 in the paper for comparability.
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