Supplemental Information

A Wide-Bandgap Graphene-like Structure C₆BN with Ultra-Low

Dielectric Constant

Mengyang Li,^{a,b,†} Yuqi Zhou,^{a,†} Bei Liu,^a Qun Wei,^a Siying Shao,^a Kun Yuan,^c Bing Wei,^{a,*} Jincheng Zhang,^{b,*}

^a School of Physics, Xidian University, Xi'an, 710071, China

^b National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated

Technology, School of Microelectronics, Xidian University, Xi'an, 710071, China

^c College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China

* Corresponding Authors: jchzhang@xidian.edu.cn (J.C. Zhang); bwei@xidian.edu.cn (B. Wei);

[†] These authors equally contribute to this work.

Fig. S1 Top view structure of eight models for C_6BN isomers without optimization from (a) to (h) and after optimization from (a') to (h'). The carbon, nitrogen, and boron atoms are in brown, purple, and golden yellow, respectively. The primitive cell is marked by the red box for C_6BN isomers and C_8 .

	C _{1j}	C_{2j}	C_{3j}
C_{i1}	130.151	42.560	0
C_{i2}	42.560	130.151	0
C_{i3}	0	0	43.795

Table S1 Stiffness matrixes in N/m of C₆BN.

Fig. S2 Stiffness matrixes in N/m of C₆BN and the change in energy with different strain.