Supplemental material for:

Large valley splitting and vacancy-induced valley polarization in two-

dimensional WSeNH

Ziqi Wang, Xuening Han, Pei Zhao, and Yan Liang*

College of Physics and Optoelectronic Engineering, Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, People's Republic of China

*E-mail: <u>yliang.phy@ouc.edu.cn</u>

Note 1. optimized structure files of pure 2D WSeNH and 2D WSeNH with one hydrogen vacancy:

2D WSENH 10		
3.1145000458 -1.5572500229 0.0000000000	0.00000000000000000000000000000000000	0.00000000000000000000000000000000000
H N Se W	0.000000000	25.0000000000
1 1 1 1		
Direct		
0.333330005	0.666670024	0.607779980
0.333330005	0.666670024	0.566820025
0.333330005	0.666670024	0.450480014
0.666670024	0.333330005	0.520510018
2D WSeNH with H vacancy		
1.0		
12.4813003540	0.0000000000	0.0000000000
-6.2406501770	10.8091231788	0.0000000000
0.000000000	0.0000000000	25.0000000000
H N Se W		
15 16 16 16		
Direct		
0.083420001	0.166710004	0.546700001
0.334809989	0.168679997	0.546190023
0.583869994	0.168679997	0.546190023
0.833289981	0.166710004	0.546700001
0.083829999	0.417659998	0.546739995
0.334809989	0.416130006	0.546190023
0.831319988	0.416130006	0.546190023
0.083930001	0.666970015	0.546490014
0.333029985	0.666970015	0.546490014
0.583869994	0.665189981	0.546190023

0.831319988	0.665189981	0.546190023
0.083829999	0.916170001	0.546739995
0.333029985	0.916069984	0.546490014
0.582340002	0.916170001	0.546739995
0.833289981	0.916580021	0.546700001
0.083360001	0.166679993	0.505710006
0 332969993	0 165930003	0 505209982
0 582970023	0 165930003	0.505209982
0.833320022	0 166679993	0.505710006
0.083640002	0.417270005	0.505739987
0.332969993	0.417030007	0.505209982
0.583320076	0.416660005	0.501200023
0.834070027	0.417030007	0.501270025
0.0838100027	0.41/05000/	0.505209982
0.065610002	0.000909993	0.505500019
0.555090007	0.000909993	0.505500019
0.382970023	0.00/0299//	0.505209982
0.834070027	0.66/0299//	0.505209982
0.083640002	0.916360021	0.505/3998/
0.333090007	0.916190028	0.505500019
0.582729995	0.916360021	0.505739987
0.833320022	0.916639984	0.505/10006
0.083439998	0.166720003	0.389499992
0.333400011	0.167009994	0.389629990
0.583609998	0.167009994	0.389629990
0.833280027	0.166720003	0.389499992
0.083420001	0.416830003	0.389200002
0.333400011	0.416390002	0.389629990
0.583329976	0.416669995	0.386790007
0.832989991	0.416390002	0.389629990
0.083180003	0.666589975	0.389149994
0.333409995	0.666589975	0.389149994
0.583609998	0.666599989	0.389629990
0.832989991	0.666599989	0.389629990
0.083420001	0.916580021	0.389200002
0.333409995	0.916819990	0.389149994
0.583169997	0.916580021	0.389200002
0.833280027	0.916559994	0.389499992
0 165940002	0.082570001	0 459450006
0.416390002	0.082769997	0 459360003
0.666630030	0.082570001	0.459450006
0.916670024	0.083329998	0.459520012
0 165940002	0.333370000	0.459450006
0.105940002	0.335180008	0.459610000
0.664810002	0.335180014	0.450610000
0.017/2008/	0.333370000	0.450450006
0.517425564	0.555570000	0.459450000
0.100740000	0.505490014	0.459190011
0.410390002	0.5650099998	0.439300003
0.004810002	0.5/963001/	0.439019999
0.91/230010	0.222240095	0.459560003
0.166/40000	0.833249986	0.459190011
0.416509986	0.833249986	0.459190011
0.666630030	0.834060013	0.459450006
0.917429984	0.834060013	0.459450006

Fig. S1. Band structures of 2D WSeNH using (a-b) LDA and (c-d) HSE functionals.

Table S1. Calculated energy gaps of 2D WSeNH by using different functionals.					
	PBE	LDA	HSE06		
Eg (w/o SOC)	2.02	2.00	2.53		
Eg (SOC)	1.72	1.73	2.19		

Fig. S2. Band structures of 2D WSeNH under external strain in the range of -5% \sim 5%.

Fig. S3. Density of states of $4 \times 4 \times 1$ supercell of 2D WSeNH with a hydrogen vacancy.

Fig. S4. The Berry curvature of 2D WSeNH with a hydrogen vacancy along high symmetry points.