Highvalent actinyl (AnO₂; An=U, Np and Pu) complexation with TEtraQuinoline (TEQ) ligand – A DFT study

Abigail Jennifer G and Elumalai Varathan*

Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.

Email: varathan.elumalai85@gmail.com

Table number	Title	Page number
Table S1	Geometric and electronic properties of actinyl cations in gas-phase computed at PBE/TZ2P level of theory	1
Table S2	Cavity size (in Å) of the TEQ after and before complexation with actinyl. The cavity size computed at PBE/TZ2P and PBE-D3(BJ)/TZ2P are provided on either side of "/", respectively	2
Table S3	Torsion angle in TEQ and its complexes computed with PBE and PBE-D3(BJ) functionals in gas-phase	2
Table S4	Computed bond lengths (in Å) of the actinyl-TEQ complexes in gas-phase at PBE-D3(BJ)/TZ2P level of theory	3
Table S5	Computed bond angles (in °) of the actinyl-TEQ complexes in gas-phase using PBE and PBE-D3(BJ) functionals	3
Table S6	O=An=O vibration frequencies (cm ⁻¹) in actinyl cations and their TEQ complexes calculated at PBE/TZ2P and PBE-D3(BJ)/TZ2P level of theories	4
Table S7	Wiberg bond index calculated by the Natural Bond Orbital (NBO) analysis of actinyl-TEQ complexes in gas phase at PBE/TZ2P level of theory	4
Table S8	Mulliken charges on interacting atoms of actinyl-TEQ complexes computed at PBE/TZ2P level of theory	5
Table S9	Spin density and orbital population of the actinyl's valence orbital on complexation with TEQ computed through NPA in gas-phase at Hybrid: PBE0-D3(BJ)/TZ2P/SR-ZORA	5
Table S10	Thermodynamic parameters (in kcal/mol) for the formation of actinyl-TEQ complexes computed at PBE-D3(BJ)/TZ2P level of theory	6
Table S11	Energy decomposition analysis (EDA) of actinyl-TEQ complexes. Actinyl versus TEQ, with energy contributions given in kcal/mol computed at PBE-D3(BJ)/TZ2P level of theory in gas phase	6
Table S12	EDA of actinyl-TEQ complexes computed at Hyrid: PBE0- D3(BJ)/TZ2P level of theory in gas phase	7
Figure S1	Optimized geometry of actinyl-TEQ complexes in gas- phase	8

	Bond length (in Å)	NBO	Bond angle (in °)	Mullike	n charge	NPA	charge	Spin	density	An's va	alence or	bital occ	upancy
	An=01/2	An=01/2	∠01=An=02	An	01/02 (avg.)	An	O1/O2 (avg.)	An	01/02 (avg.)	7s	5f	6d	7p
[UO ₂]+	1.771	1.022	180.0	2.524	-0.262	2.034	-0.517	1.088	-0.044	0.050	3.010	0.930	-
[NpO ₂] ⁺	1.765	1.008	180.0	1.857	-0.428	1.895	-0.448	2.201	-0.101	0.040	4.190	0.890	-
[PuO ₂]+	1.734	0.998	180.0	1.804	-0.402	1.719	-0.360	3.315	-0.158	0.040	5.400	0.860	-
[UO ₂] ²⁺	1.716	2.283	180.0	2.554	-0.277	2.465	-0.233	0.000	0.000	0.050	2.520	1.020	0.010
[NpO ₂] ²⁺	1.713	1.117	180.0	2.457	-0.228	2.311	-0.155	1.125	-0.063	0.040	2.730	0.960	-
[PuO ₂] ²⁺	1.684	1.098	180.0	2.388	-0.194	2.128	-0.064	2.249	-0.125	0.040	4.940	0.930	0.010
[NpO ₂] ³⁺	1.705	1.253	149.5	2.982	0.009	2.739	0.131	0.000	0.000	0.010	1.700	0.450	-
[PuO ₂] ³⁺	1.715	1.190	152.0	2.855	0.072	2.576	0.212	1.339	-0.169	0.010	1.650	0.410	-

 Table S1. Geometric and electronic properties of actinyl cations in gas-phase computed at PBE/TZ2P level of theory

Table S2. Cavity size (in Å) of the TEQ after and before complexation with actinyl. The cavity size computed at PBE/TZ2P and PBE-D3(BJ)/TZ2P are provided on either side of "/", respectively

	Actinyl-TE	Q complexes	TE	Q
	N1-N3	N2-N4	N1-N3	N2-N4
[UO₂L]⁺	4.806 / 4.800	4.827 / 4.829		
[NpO ₂ L] ⁺	4.802 / 4.800	4.814 / 4.813		
[PuO ₂ L] ⁺	4.793 / 4.783	4.813 / 4.810		
[UO ₂ L] ²⁺	4.751 / 4.749	4.789 / 4.784	1 515 / 1 102	
[NpO ₂ L] ²⁺	4.727 / 4.722	4.763 / 4.765	4.51574.452	4.452 / 4.433
[PuO ₂ L] ²⁺	4.728 / 4.719	4.751 / 4.744		
[NpO ₂ L] ³⁺	4.660 / 4.653	4.713 / 4.714		
[PuO ₂ L] ³⁺	4.723 / 4.717	4.720 / 4.718		

Table S3. Torsion angle (°) in TEQ and its complexes computed with PBE and PBE-D3(BJ) functionals in gas-phase

Complex	N1-C1-C2-C3	N2-C1-C2-C3	N3-C1-C2-C3	N4-C1-C2-C3
TEQ	71.8 / 74.5	69.2 / 72.0	71.1 / 72.8	71.8 / 75.2
[UO₂L]⁺	77.1 / 82.1	52.1 / 52.5	77.2 / 78.2	55.2 / 55.4
[NpO ₂ L] ⁺	71.5 / 71.6	60.0 / 60.0	62.2 / 62.3	59.0 / 59.1
[PuO₂L]⁺	61.3 / 61.5	62.5 / 62.4	61.0 / 61.2	66.1 / 66.3
[UO ₂ L] ²⁺	65.1 / 64.7	56.7 / 57.6	62.9 / 62.8	61.4 / 61.8
[NpO ₂ L] ²⁺	64.0/65.1	57.5 / 56.5	62.4 / 63.3	61.5 / 61.0
[PuO ₂ L] ²⁺	64.8 / 65.0	56.9 / 56.1	63.0 / 62.6	59.3 / 61.6
[NpO ₂ L] ³⁺	62.0 / 63.0	57.9 / 56.6	60.0 / 60.6	62.0 / 61.8
[PuO ₂ L] ³⁺	59.8 / 60.5	60.0 / 59.8	58.3 / 58.1	61.6 / 62.0

Complex	An-N1	An-N2	An-N3	An-N4	An=O1	An=O2
[UO ₂ L]+	2.395	2.411	2.406	2.419	1.811	1.813
[NpO ₂ L] ⁺	2.407	2.361	2.399	2.455	1.801	1.802
[PuO ₂ L] ⁺	2.395	2.407	2.397	2.403	1.790	1.787
[UO ₂ L] ²⁺	2.375	2.394	2.375	2.395	1.795	1.796
[NpO ₂ L] ²⁺	2.360	2.384	2.363	2.386	1.776	1.777
[PuO ₂ L] ²⁺	2.346	2.377	2.373	2.374	1.763	1.765
[NpO ₂ L] ³⁺	2.327	2.359	2.328	2.361	1.769	1.771
[PuO ₂ L] ³⁺	2.360	2.351	2.359	2.372	1.758	1.760

Table S4. Computed bond lengths (in Å) of the actinyl-TEQ complexes in gas-phase at PBE-D3(BJ)/TZ2P level of theory

Table S5. Computed bond angles (in °) of the actinyl-TEQ complexes in gas-phase using PBE and PBE-D3(BJ) functionals

	Anglo	s hotwoon adi	iacont N atom	oc (cic)		Angles between opposite N		
	Aligie	s between au		∠01=An=02	atoms (trans)			
Complex	∠N1-An-N2	∠N2-An-N3	∠N3-An-N4	∠N4-An-N5		∠N1-An-N3	∠N2-An-N4	
[UO₂L]⁺	85.4 / 85.0	93.8 / 95.9	85.0 / 85.3	95.9 / 93.9	179.5 / 179.3	177.2 / 178.0	177.8 / 177.2	
[NpO₂L]⁺	94.5 / 94.5	90.5 / 90.5	89.2 / 89.2	86.0 / 86.1	179.1 / 179.2	174.6 / 174.6	175.7 / 175.7	
[PuO₂L]⁺	90.2 / 90.3	89.7 / 89.8	89.6 / 89.4	90.5 / 90.5	179.9 / 179.9	173.1 / 173.1	179.2 / 179.2	
[UO ₂ L] ²⁺	92.5 / 91.9	88.0 / 88.6	90.8 / 90.6	88.8 / 89.1	179.8 / 179.8	178.1 / 177.8	174.8 / 175.2	
[NpO ₂ L] ²⁺	91.9 / 92.4	88.4 / 88.1	90.8 / 91.0	89.1 / 88.7	179.8 / 179.9	178.5 / 178.0	174.0 / 174.7	
[PuO ₂ L] ²⁺	92.8 / 92.8	88.8 / 87.3	91.0 / 90.6	87.5 / 89.5	179.7 / 179.8	177.7 / 178.1	173.9 / 173.9	
[NpO ₂ L] ³⁺	92.0 / 92.3	88.5 / 88.2	90.5 / 90.7	89.3 / 89.0	179.7 / 179.8	177.3 / 177.0	173.7 / 174.1	
[PuO ₂ L] ³⁺	91.2 / 91.5	90.0 / 89.9	89.9 / 89.6	89.2 / 89.3	179.6 / 179.6	176.6 / 176.5	174.6 / 174.8	

Table S6. O=An=O vibration frequencies (cm⁻¹) in actinyl cations and their TEQ complexes calculated at PBE/TZ2P and PBE-D3(BJ)/TZ2P level of theories (given on the respective sides of /)

	Actiny	l cations		Actinyl-TEC	2 complexes
	V _{sym}	V _{asym}		V _{sym}	V _{asym}
[UO ₂]+	906.7 / 906.8	984.1 / 984.2	[UO ₂ L] ⁺	800.7 / 803.0	894.0 / 895.9
[NpO ₂] ⁺	888.1 / 917.3	980.2 / 998.7	[NpO₂L]⁺	780.6 / 782.3	881.7 / 883.5
[PuO₂]⁺	891.8 / 892.1	989.6 / 989.9	[PuO ₂ L] ⁺	772.3 / 773.7	877.7 / 879.3
[UO ₂] ²⁺	998.8 / 998.1	1101.0 / 1100.3	[UO ₂ L] ²⁺	836.0 / 837.2	926.6 / 927.6
[NpO ₂] ²⁺	966.5 / 967.2	1083.1 / 1083.9	[NpO ₂ L] ²⁺	828.7 / 830.0	928.4 / 929.7
[PuO ₂] ²⁺	977.4 / 888.4	1096.8 / 1008.1	[PuO ₂ L] ²⁺	809.5 / 812.4	926.3 / 928.5
				1	
[NpO ₂] ³⁺	931.0 / 930.6	1030.9 / 1030.5	[NpO₂L] ³⁺	840.1 / 841.8	949.1 / 950.9
[PuO ₂] ³⁺	862.8 / 865.9	969.5 / 973.1	[PuO ₂ L] ³⁺	821.1 / 821.5	938.5 / 939.0

Table S7. Wiberg bond index calculated by the Natural Bond Orbital (NBO) analysis of actinyl-TEQ complexes in gas phase at PBE/TZ2P level of theory

Complex	An-N1	An-N2	An-N3	An-N4	An=01	An=O2
[UO ₂ L] ⁺	0.236	0.231	0.233	0.229	1.054	1.058
[NpO ₂ L] ⁺	0.223	0.194	0.212	0.210	1.033	1.036
[PuO₂L]⁺	0.194	0.186	0.194	0.186	1.010	1.005
[UO ₂ L] ²⁺	0.551	0.513	0.548	0.511	2.168	2.162
[NpO ₂ L] ²⁺	0.267	0.250	0.268	0.250	1.073	1.077
[PuO ₂ L] ²⁺	0.244	0.229	0.241	0.238	1.045	1.049
[NpO ₂ L] ³⁺	0.325	0.287	0.325	0.288	1.101	1.109
[PuO₂L] ³⁺	0.250	0.247	0.253	0.247	1.054	1.058

Complex	An	N1	N2	N3	N4	01	02
[UO₂L]⁺	1.828	-0.488	-0.515	-0.483	-0.518	-0.585	-0.580
[NpO ₂ L] ⁺	1.743	-0.472	-0.488	-0.496	-0.491	-0.584	-0.580
[PuO ₂ L] ⁺	1.786	-0.493	-0.481	-0.490	-0.484	-0.576	-0.581
[UO ₂ L] ²⁺	1.961	-0.534	-0.518	-0.521	-0.521	-0.546	-0.541
[NpO ₂ L] ²⁺	1.887	-0.515	-0.503	-0.506	-0.505	-0.530	-0.525
[PuO ₂ L] ²⁺	1.939	-0.504	-0.507	-0.503	-0.503	-0.521	-0.513
[NpO ₂ L] ³⁺	1.953	-0.523	-0.503	-0.511	-0.505	-0.496	-0.485
[PuO ₂ L] ³⁺	1.970	-0.507	-0.509	-0.504	-0.502	-0.505	-0.493

Table S8. Mulliken charges on interacting atoms of actinyl-TEQ complexes computed atPBE/TZ2P level of theory

Table S9. Spin density and orbital population of the actinyl's valence orbital on complexation with TEQ computed through NPA in gas-phase at Hybrid: PBE0-D3(BJ)/TZ2P/SR-ZORA

	NF	PA Spin dens	ity	An's vale	An's valence orbital occupancy in complex				
Complex	An	Assigned OS	01/02 (avg.)	7s	5f	6d	7p		
[UO ₂ L] ⁺	0.712	V	-0.032	0.16	2.89	1.50	0.02		
[NpO ₂ L] ⁺	2.122	V	-0.103	0.15	4.21	1.39	0.02		
[PuO₂L]⁺	3.284	V	-0.177	0.15	5.35	1.34	0.02		
[UO ₂ L] ²⁺	0.000	VI	0.000	0.17	2.65	1.58	0.02		
[NpO ₂ L] ²⁺	1.136	VI	-0.072	0.18	3.94	1.54	0.02		
[PuO ₂ L] ²⁺	2.468	VI	-0.163	0.17	5.17	1.50	0.02		
[NpO ₂ L] ³⁺	0.000	VII	0.000	0.18	3.98	1.62	0.02		
[PuO ₂ L] ³⁺	2.338	VII → VI	-0.158	0.18	4.11	1.50	0.02		

Complex		Gas p	ohase		DCE medium				
complex	ΔG	ΔΗ	ΔΕ	-T∆S	ΔG	ΔН	ΔΕ	-ΤΔS	
[UO₂L]⁺	-116.21	-129.85	-130.46	13.64	-36.64	-47.32	-48.57	10.68	
[NpO ₂ L] ⁺	-115.17	-128.27	-129.15	13.10	-45.86	-51.26	-64.79	11.34	
[PuO ₂ L] ⁺	-108.97	-120.35	-122.15	11.38	-34.34	-47.05	-48.33	12.71	
[UO ₂ L] ²⁺	-288.06	-302.66	-304.61	14.60	-74.55	-88.39	-90.18	13.85	
[NpO ₂ L] ²⁺	-291.47	-306.24	-308.27	14.77	-84.31	-98.39	-100.24	14.08	
[PuO ₂ L] ²⁺	-306.19	-319.80	-321.76	13.61	-102.00	-115.01	-116.58	13.02	
[NpO ₂ L] ³⁺	-624.24	-637.81	-640.64	13.56	-198.24	-214.44	-215.92	16.20	
[PuO ₂ L] ³⁺	-636.88	-651.36	-653.4	14.48	-218.09	-230.29	-232.75	12.20	

Table S10. Thermodynamic parameters (in kcal/mol) for the formation of actinyl-TEQ complexes computed at PBE-D3(BJ)/TZ2P level of theory

Table S11. Energy decomposition analysis (EDA) of actinyl-TEQ complexes. Actinyl versus TEQ, with energy contributions given in kcal/mol computed at PBE-D3(BJ)/TZ2P level of theory in gas phase

Fragments	$\Delta E_{el-stat}$	ΔE _{orb}	ΔE_{steric}	ΔE _{Pauli}	ΔE _{int}	ΔE _{disp}
[UO ₂] ⁺ vs L	-221.68	-188.84	54.87	276.55	-145.33	-11.35
[NpO₂]⁺ vs L	-222.32	-169.94	41.14	263.47	-139.61	-10.82
[PuO ₂]+ vs L	-216.28	-159.95	33.75	250.03	-138.28	-12.08
[UO ₂] ²⁺ vs L	-288.61	-332.27	8.51	297.12	-334.99	-11.24
[NpO ₂] ²⁺ vs L	-288.49	-324.91	5.95	294.44	-329.72	-10.76
[PuO ₂] ²⁺ vs L	-284.01	-317.85	-0.46	283.55	-330.36	-12.05
[NpO ₂] ³⁺ vs L	-359.86	-633.44	-32.57	327.29	-676.73	-10.72
[PuO ₂] ³⁺ vs L	-343.25	-625.34	-47.11	296.14	-684.46	-12.01

Fragments	$\Delta E_{el-stat}$	ΔE _{orb}	ΔE_{steric}	ΔE _{Pauli}	ΔE _{int}	ΔE _{disp}
[UO ₂] ⁺ vs L	-218.20	-172.44	42.23	260.44	-142.47	-12.27
[NpO ₂] ⁺ vs L	-220.15	-164.89	28.37	248.52	-147.31	-11.69
[PuO ₂] ⁺ vs L	-214.48	-148.72	22.70	237.18	-139.49	-13.47
[UO ₂] ²⁺ vs L	-289.67	-321.59	-5.07	284.60	-337.81	-12.11
[NpO ₂] ²⁺ vs L	-289.63	-319.82	-9.67	279.97	-341.10	-11.62
[PuO ₂] ²⁺ vs L	-285.34	-318.68	-14.79	270.55	-346.54	-13.07
[NpO ₂] ³⁺ vs L	-362.93	-595.26	-48.30	314.62	-654.26	-11.57
[PuO ₂] ³⁺ vs L	-343.88	-653.18	-53.82	290.06	-720.02	-13.01

Table S12. EDA of actinyl-TEQ complexes (in kcal/mol) computed at PBE0-D3(BJ)/TZ2P level of theory in gas phase

Figure S1. QTAIM topology of the actinyl-TEQ complexes representing the bond paths and electron densities (ρ) at the BCPs.