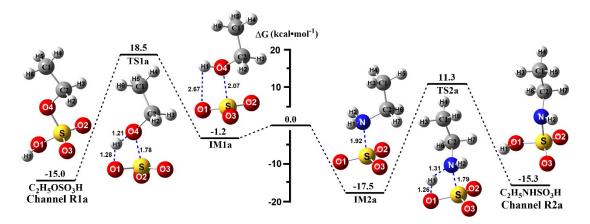
The reaction mechanism of SO₃ with the multifunctional compound ethanolamine and its atmospheric implications

Rui Wang^a, Ruxue Mu^{a,‡}, Zeyao Li^{a,‡}, Yongqi Zhang^a, Jihuan Yang^a, Guanhua Wang^a, Tianlei Zhang^{a,*}

S. NO	Caption
S3	Fig. S1 Schematic potential energy surfaces for the reactions of $SO_3 + C_2H_5OH$ and $SO_3 + C_2H_5NH_2$ at the CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(2 <i>df</i> ,2 <i>pd</i>) level
S4	Fig. S2 Schematic potential energy surface for the reaction of $SO_3 + 2H_2O$ at the CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(2 <i>df</i> ,2 <i>pd</i>) level
S5	Fig. S3 The optimized geometrical structures for $NH_2CH_2CH_2OSO_3^-$ and $HOCH_2CH_2NH_2^+\cdots SO_3^-$ ion at the M06-2X/6-311++G(2 <i>df</i> ,2 <i>pd</i>) level
S6	Fig. S4 NBO charges of $SO_3^{-\cdots^+}NH_2CH_2CH_2OH$ and $SO_3^{-\cdots^+}NH_2CH_2CH_2OH_2OH^{-\cdots}H_2O$ in the gas phase optimized at the M06-2X/6-311++G(2 <i>df</i> ,2 <i>pd</i>) level and the NBO charges of ring complexes of SO_3^{-\cdots^+}NH_2CH_2CH_2OH^{-\cdots}(H_2O)_2 and SO_3^{-OCH_2CH_2NH_3^+} on water droplet optimized with ONIOM method (M06-2X/6-311++G(2 <i>df</i> ,2 <i>pd</i>):pm6)
S7	Fig. S5 Computed electrostatic potential mapped molecular van der Waals (vdW) surfaces of SO ₃ with OH and NH ₂ molecules HOCH ₂ CH ₂ NH ₂ molecules at the M06- $2X/6-311++G(2df,2pd)$ level
S8-9	Table S1 The Energy barriers (ΔE) and unsigned error (UE) (kcal·mol ⁻¹) for the SO ₃ + HOCH ₂ CH ₂ NH ₂ reaction at different theoretical methods with zero-point energy (ZPE) correction
S10-11	Table S2 Relative energies (ΔE and $\Delta(E + ZPE)/(kcal \cdot mol^{-1})$), enthalpies ($\Delta H/(kcal \cdot mol^{-1})$), entropy (S(298 K)/(cal \cdot mol^{-1} \cdot K^{-1})) and Gibbs free energies ($\Delta G(298 \text{ K})/(kcal \cdot mol^{-1})$) for the reaction of SO ₃ with C ₂ H ₅ OH and C ₂ H ₅ NH ₂ , along with the reactions between SO ₃ and the OH and NH ₂ moieties of HOCH ₂ CH ₂ NH ₂ without and with H ₂ O
S12	Table S3 Equilibrium coefficients (cm ³ ·molecule ⁻¹) for the SO ₃ ····H ₂ O andHOCH ₂ CH ₂ NH ₂ ····H ₂ O complexes within 212.6-320.0 K
S13	Table S4 Concentrations (molecules·cm-3) for the SO_3 ···H_2O and HOCH_2CH_2NH_2···H_2O complexes within 212.6-320.0 K
S14-15	Table S5 Rate coefficients (cm ³ ·molecule ⁻¹ ·s ⁻¹) for the SO ₃ + HOCH ₂ CH ₂ NH ₂ reaction without and with H ₂ O with HIR treatment calculated by master equation within 212.6-320.0 K
S16	Table S6 Rate coefficients (cm ³ ·molecule ⁻¹ ·s ⁻¹) for the SO ₃ + HOCH ₂ CH ₂ NH ₂ reaction without and with H ₂ O calculated within 212.6-320.0 K


^a Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, P. R. China

^{*} Corresponding authors. Tel: +86-0916-2641083, Fax: +86-0916-2641083.

E-mail: ztianlei88@l63.com (T. L. Zhang)

[‡] Ruxue Mu and Zeyao Li have contributed equally to this work.

S17-18	Table S7 The high-pressure limiting rate coefficients (cm ³ ·molecule ⁻¹ ·s ⁻¹) for the reaction of SO ₃ with C_2H_5OH and $C_2H_5NH_2$, along with the reactions between SO ₃ and the OH and NH ₂ moieties of HOCH ₂ CH ₂ NH ₂ without and with H ₂ O within 212.6-320.0 K
S19	Table S8 Rate coefficients (cm ³ ·molecule ⁻¹ ·s ⁻¹) for the reaction of SO ₃ with C_2H_5OH , $C_2H_5NH_2$ and $2H_2O$ calculated by master equation within 212.6-320.0 K
S20	Fig. S6 The dynamic trajectories of the gas-phase reaction of SO_3 with OH and NH_2 moieties of MEA without and with H_2O
S21	Fig. S7 The z coordinates of SO_3 as the function of simulation time (a) the z coordinates of SO_3 molecule as the function of simulation time; (b) the density profile of water and (c) the pie chart with the occurrence percentages of SO_3 molecule at the air-water interface and in water phase
S22	Fig. S8 The z coordinates of MEA as the function of simulation time (a) the z coordinates of MEA molecule as the function of simulation time; (b) the density profile of water and (c) the pie chart with the occurrence percentages of MEA molecule at the air-water interface, in water phase and gas phase
S23	Fig. S9 The simulated trajectories of the formation of $HOCH_2CH_2NH_2$ and $NH_2CH_2CH_2OH$ molecules on water droplet
S24	Fig. S10 The simulated trajectories of the formation of SO ₃ -NH ₂ CH ₂ CH ₂ OH molecule on water droplet
S25	Fig. S11 BOMD simulation trajectories and snapshots of $NH_2CH_2CH_2SO_4 \cdots H_3O^+$ ion pair from the reaction between SO ₃ and HOCH ₂ CH ₂ NH ₂ with one interfacial water molecule on water droplet
S26	Fig. S12 BOMD simulation trajectories and snapshots of $NH_2CH_2CH_2SO_4$ ····H_3O ⁺ ion pair from the reaction between SO ₃ and HOCH ₂ CH ₂ NH ₂ with two interfacial water molecules on water droplet
S27	Fig. S13 BOMD simulation trajectories and snapshots of HSO_4^- and $HOCH_2CH_2NH_3^+$ ion from SO ₃ , $HOCH_2CH_2NH_2$ and three interfacial water molecules on water droplet
S28	Fig. S14 BOMD simulation trajectories and snapshots of $HOCH_2CH_2NH_2^+-SO_3^-$ ion pair from the reaction between SO ₃ and $HOCH_2CH_2NH_2$ on water droplet
S29	Fig. S15 BOMD simulation trajectories and snapshots of SO_3 -OCH ₂ CH ₂ NH ₃ ⁺ ion pair from the SO_3 -HOCH ₂ CH ₂ NH ₂ complex on water droplet
S30	Fig. S16 Snapshots of the nucleation simulation from the product of reaction of SO_3 with NH_2 moiety of $HOCH_2CH_2NH_2$

Fig. S1 Schematic potential energy surfaces for the reactions of SO₃ + C_2H_5OH and SO₃ + $C_2H_5NH_2$ at the CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(2*df*,2*pd*) level

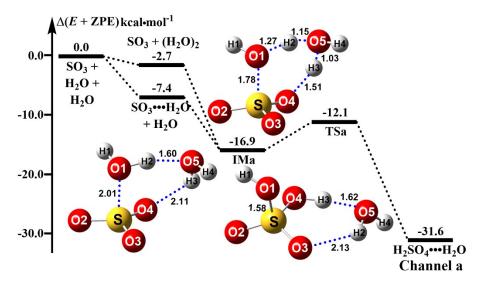
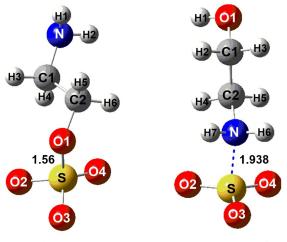
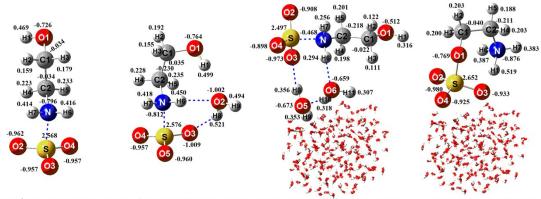




Fig. S2 Schematic potential energy surface for the reaction of $SO_3 + 2H_2O$ at the CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(2*df*,2*pd*) level

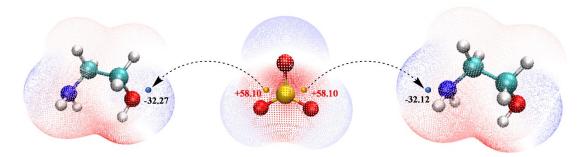

 $NH_2CH_2CH_2OSO_3^- HOCH_2CH_2NH_2^+ \cdots SO_3^-$

Fig. S3 The optimized geometrical structures for $NH_2CH_2CH_2OSO_3^-$ and $HOCH_2CH_2NH_2^+\cdots SO_3^-$ ion at the M06-2X/6-311++G(2*df*,2*pd*) level

 $SO_3^{-\dots^+}NH_2CH_2CH_2OH SO_3^{-\dots^+}NH_2CH_2CH_2OH^{\dots}H_2O SO_3^{-\dots^+}NH_2CH_2CH_2OH^{\dots}(H_2O)_2 SO_3^{-}OCH_2CH_2NH_3^{+}$

Fig. S4 NBO charges of $SO_3^{-\cdots^+}NH_2CH_2CH_2OH$ and $SO_3^{-\cdots^+}NH_2CH_2CH_2OH^{-\cdots}H_2O$ in the gas phase optimized at the M06-2X/6-311++G(2*df*,2*pd*) level and the NBO charges of ring complexes of $SO_3^{-\cdots^+}NH_2CH_2CH_2OH^{-\cdots}(H_2O)_2$ and $SO_3^{-}OCH_2CH_2NH_3^{+}$ on the droplet optimized with ONIOM method (M06-2X/6-311++G(2*df*,2*pd*):pm6)

Fig. S5 Computed electrostatic potential mapped molecular van der Waals (vdW) surfaces of SO₃ with OH and NH₂ molecules HOCH₂CH₂NH₂ molecules at the M06-2X/6-311++G(2*df*,2*pd*) level

Channel ^a	Methods	ΔE^{b}	ΔE^{c}	$\Delta E^{\rm d}$	UE
	CCSD(T)/CBS//M06-2X/ 6-311++G(2 <i>df</i> ,2 <i>pd</i>)	-27.0	1.9	-24.8	0.00
Channel D1	CCSD(T)-F12/cc-pVTZ-F12//M06-2X/ 6-311++G(2 <i>df</i> ,2 <i>pd</i>)	-27.2	2.2	-24.5	0.27
Channel R1	CCSD(T)/aug-cc-pVTZ//M06-2X/ 6-311++G(2 <i>df</i> ,2 <i>pd</i>)	-25.7	2.4	-23.8	0.93
	CCSD(T)-F12/cc-pVDZ-F12//M06-2X/ 6-311++G(2 <i>df</i> ,2 <i>pd</i>)	-25.8	3.5	-23.2	1.47
	CCSD(T)/CBS//M06-2X/ 6-311++G(2 <i>df</i> ,2 <i>pd</i>)	-15.8	6.0	-33.1	0.00
	CCSD(T)-F12/cc-pVTZ-F12//M06-2X/ 6-311++G(2 <i>df</i> ,2 <i>pd</i>)	-15.6	6.3	-32.9	0.23
Channel R2	CCSD(T)/aug-cc-pVTZ//M06-2X/ 6-311++G(2 <i>df</i> ,2 <i>pd</i>)	-15.3	6.6	-31.6	0.87
	CCSD(T)-F12/cc-pVDZ-F12//M06-2X/ 6-311++G(2 <i>df</i> ,2 <i>pd</i>)	-14.9	7.4	-31.5	1.23

Table S1 The Energy barriers (ΔE) and unsigned error (UE) (kcal·mol⁻¹) for the SO₃ + HOCH₂CH₂NH₂ reaction at different theoretical methods with zero-point energy (ZPE) correction

^a Channel R1 and Channel R2 denote the gas-phase reactions of SO₃ with OH and NH₂ moieties of MEA, respectively;

^{b, c and d} respectively denote the species of pre-reactive complexes, transition states and products involved in the SO₃ + MEA reaction.

As presented in Table S1, the unsigned error at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(2df,2pd) level compared to unsigned error calculated at the CCSD(T)/CBS//M06-2X/6-311++G(2df,2pd) level, was more than 1.47 kcal·mol⁻¹, indicating that CCSD(T)-F12 with a small basis set of cc-pVDZ-F12 is not appropriate. As compared with unsigned error calculated at the CCSD(T)/CBS//M06-2X/6-311++G(2df,2pd) level, unsigned errors calculated at CCSD(T)/aug-cc-pVTZ//M06-2X/6-311++G(2df,2pd) and CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(2df,2pd) were 0.93 and 0.27 kcal·mol⁻¹, respectively, suggesting that the relative energies obtained at the CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(2df,2pd) level is the most favorable among three levels of CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(2df,2pd) and CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(2df,2pd). Considering the computational accuracy, the CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(2df,2pd) method was chosen to calculate the single point energies of all species for the SO₃ + MEA reactions without and with water. So, the single-point energy

calculations for the SO₃ + MEA reaction without and with water molecule in the gas phase have been performed at the CCSD(T)-F12/cc-pVTZ-F12 level based on the optimized geometries at the M06-2X/6-311++G(2df,2pd) level.

Table S2 Relative energies (ΔE and $\Delta(E + ZPE)/(kcal \cdot mol^{-1})$), enthalpies ($\Delta H/(kcal \cdot mol^{-1})$), entropy (S(298 K)/(cal \cdot mol^{-1} \cdot K^{-1})) and Gibbs free energies ($\Delta G(298 \text{ K})/(kcal \cdot mol^{-1})$) for the reaction of SO₃ with C₂H₅OH and C₂H₅NH₂, along with the reactions between SO₃ and the OH and NH₂ moieties of HOCH₂CH₂NH₂ without and with H₂O

Species	ZPE	ΔE	S	ΔG	$\Delta(E + ZPE)$	ΔH	T_1
$SO_3 + HOCH_2CH_2NH_2$	70.4	0.0	134.3	0.0	0.0	0.0	0.02820363
IM1	72.5	-17.7	94.5	-4.1	-15.6	-15.9	0.0144697
TS1	69.4	7.3	90.8	18.6	6.3	5.6	0.01471739
NH ₂ CH ₂ CH ₂ SO ₄ H	73.2	-35.6	86.4	-19.6	-32.9	-33.9	0.01397518
$SO_3 + NH_2CH_2CH_2OH$	70.4	0.0	134.3	0.0	0.0	0.0	0.02820363
IM2	73.7	-30.5	89.8	-14.6	-27.2	-27.9	0.01440033
TS2	70.0	2.6	91.6	14.2	2.2	1.5	0.01465095
HOCH ₂ CH ₂ NHSO ₃ H	72.5	-26.6	91.2	-12.2	-24.5	-25.0	0.01406416
$SO_3 + HOCH_2CH_2NH_2 + H_2O$	84.0	0.0	179.4	0.0	0.0	0.0	0.03820721
SO_3 ···H ₂ O + HOCH ₂ CH ₂ NH ₂	86.4	-9.8	147.5	1.5	-7.4	-8.0	0.02654947
$SO_3 + HOCH_2CH_2NH_2$ ····H ₂ O	86.3	-6.0	149.5	4.7	-3.7	-4.2	0.0284588
IM_WM1	88.2	-27.5	106.5	-2.5	-23.3	-24.2	0.01394004
TS_WM1	86.4	-21.5	99.3	2.8	-19.1	-21.0	0.01392185
NH ₂ CH ₂ CH ₂ SO ₄ H····H ₂ O	89.1	-44.7	99.9	-17.6	-39.6	-41.3	0.01359628
$SO_3 + NH_2CH_2CH_2OH + H_2O$	84.0	0.0	179.4	0.0	0.0	0.0	0.03820721
SO_3 ···H ₂ O + NH ₂ CH ₂ CH ₂ OH	86.4	-9.8	147.5	1.5	-7.4	-8.0	0.02654947
$SO_3 + HOCH_2CH_2NH_2 \cdots H_2O$	86.3	-6.0	149.5	4.7	-3.7	-4.2	0.0284588
IM_WM2	89.4	-43.2	105.0	-16.8	-37.8	-39.0	0.01396046
TS_WM2	86.4	-25.8	96.3	-1.0	-23.4	-25.7	0.01401585
HOCH ₂ CH ₂ NHSO ₃ H····H ₂ O	88.4	-38.9	104.7	-13.5	-34.6	-35.8	0.01366066
$SO_3 + C_2H_5OH$	58.6	0.0	129.1	0.0	0.0	0.0	0.02786553
IM1a	60.9	-15.0	89.8	-1.2	-12.6	-12.9	0.01485214
TS1a	58.0	7.2	86.9	18.5	6.7	5.9	0.01506695
$C_2H_5SO_4H$	61.0	-29.3	87.6	-15.0	-26.8	-27.4	0.01418237
$SO_3 + C_2H_5NH_2$	66.7	0.0	129.5	0.0	0.0	0.0	0.02786553
IM2a	69.8	-32.2	88.8	-17.5	-29.1	-29.6	0.01438851
TS2a	66.6	-0.9	85.4	11.3	-1.0	-1.9	0.01474855
C ₂ H ₅ NHSO ₃ H	68.8	-29.4	87.5	-15.3	-27.3	-27.9	0.01400273

The schematic potential energy surfaces for the SO₃ + HOCH₂CH₂NH₂ reaction (in kcal·mol⁻¹) without (Fig. 1) and with (Fig. 2) water have been re-calculated at the CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(2*df*,2*pd*) level, whereas relative energies (ΔE and $\Delta(E + ZPE)/(kcal·mol⁻¹)$), enthalpies ($\Delta H/(kcal·mol⁻¹)$), entropy (S(298 K)/(cal·mol⁻¹·K⁻¹)) and Gibbs free energies (ΔG (298 K)/(kcal·mol⁻¹)) for the reaction of SO₃ with C₂H₅OH and C₂H₅NH₂, along with the

reactions between SO_3 and the OH and NH_2 moieties of $HOCH_2CH_2NH_2$ without and with H_2O has been reorganized in Table S2.

eomptexes within	21210 52010 11	
<i>T</i> /K	SO ₃ ····H ₂ O	HOCH ₂ CH ₂ NH ₂ ····H ₂ O
212.6	2.25×10^{-20}	1.99 × 10 ⁻²³
229.7	1.41×10^{-20}	1.58×10^{-23}
259.3	9.99 × 10 ⁻²¹	1.33×10^{-23}
280.0	9.18 × 10 ⁻²¹	1.28×10^{-23}
290.0	6.14×10^{-21}	1.05×10^{-23}
298.0	4.22×10^{-21}	8.75×10^{-24}
300.0	6.78×10^{-20}	3.45×10^{-23}
310.0	4.41×10^{-19}	8.84×10^{-23}
320.0	1.69×10^{-18}	1.75×10^{-22}

Table S3 Equilibrium coefficients (cm³·molecule⁻¹) for the SO₃····H₂O and HOCH₂CH₂NH₂····H₂O complexes within 212.6-320.0 K^a

^a All equilibrium coefficients were calculated by using energies computed at the CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(2df,2pd) level and partition functions obtained at the M06-2X/6-311++G(2df,2pd) level.

T/K	SO ₃ ····H ₂ O	HOCH ₂ CH ₂ NH ₂ ···H ₂ O
280.0	5.81	1.29×10^{4}
290.0	6.76	1.89×10^{4}
298.0	7.72	$2.58 imes 10^4$
300.0	7.88	2.75×10^{4}
310.0	8.96	$3.84 imes 10^4$
320.0	9.91	$5.14 imes 10^4$

Table S4 Concentrations (molecules \cdot cm⁻³) for the SO₃ \cdots H₂O and HOCH₂CH₂NH₂ \cdots H₂O complexes within 212.6-320.0 K^a

^a All concentrations were calculated by using energies computed at CCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-

311++G(2df,2pd) level and partition functions obtained at the M06-2X/6-311++G(2df,2pd) level.

Channel	Altitude (km)	T/K	with HIR treatments	without HIR treatments
		280.0	1.58×10^{-18}	1.58×10^{-18}
		290.0	1.63×10^{-18}	1.63×10^{-18}
	0.1	298.0	1.67×10^{-18}	1.68×10^{-18}
	0 km	300.0	1.69×10^{-18}	1.69×10^{-18}
Channel R1		310.0	1.75×10^{-18}	1.76×10^{-18}
		320.0	1.83×10^{-18}	1.84×10^{-18}
	5 km	212.6	1.68×10^{-18}	1.68×10^{-18}
	10 km	229.7	1.93×10^{-18}	1.93×10^{-18}
	15 km	259.3	2.40×10^{-18}	2.40×10^{-18}
		280.0	1.51×10^{-16}	1.48×10^{-16}
		290.0	1.77×10^{-16}	1.74×10^{-16}
	0.1	298.0	1.99×10^{-16}	1.96×10^{-16}
	0 km	300.0	2.04×10^{-16}	2.01×10^{-16}
Channel R2		310.0	2.33×10^{-16}	2.30×10^{-16}
		320.0	2.62×10^{-16}	2.60×10^{-16}
	5 km	212.6	1.50×10^{-16}	1.47×10^{-16}
	10 km	229.7	1.35×10^{-16}	1.31×10^{-16}
	15 km	259.3	1.65×10^{-16}	1.59×10^{-16}
		280.0	7.42×10^{-11}	4.46 × 10 ⁻¹¹
		290.0	7.53×10^{-11}	4.45×10^{-11}
	0.1	298.0	7.60×10^{-11}	4.43×10^{-11}
	0 km	300.0	7.62×10^{-11}	4.43×10^{-11}
Channel WM1		310.0	7.72×10^{-11}	4.40×10^{-11}
		320.0	7.78×10^{-11}	4.34×10^{-11}
	5 km	212.6	7.16×10^{-11}	4.41×10^{-11}
	10 km	229.7	6.68 × 10 ⁻¹¹	4.21×10^{-11}
	15 km	259.3	6.36 × 10 ⁻¹¹	4.02×10^{-11}
		280.0	5.85×10^{-12}	3.29×10^{-12}
		290.0	6.30×10^{-12}	3.50×10^{-12}
	0.1	298.0	6.65×10^{-12}	3.64×10^{-12}
	0 km	300.0	6.74×10^{-12}	3.67×10^{-12}
Channel WM2	WM2	310.0	7.17×10^{-12}	3.93×10^{-12}
		320.0	7.58×10^{-12}	4.51×10^{-12}
	5 km	212.6	6.45×10^{-12}	3.98×10^{-12}
	10 km	229.7	6.43×10^{-12}	4.31 × 10 ⁻¹²
	15 km	259.3	6.32×10^{-12}	4.91×10^{-12}

Table S5 Rate coefficients (cm³·molecule⁻¹·s⁻¹) for the SO₃ + HOCH₂CH₂NH₂ reaction without and with H₂O with HIR treatment calculated by master equation within 212.6-320.0 K^a

^a k_{R1} and k_{R2} were respectively denoted the rate coefficients for the reactions of SO₃ with OH and NH₂ moieties in HOCH₂CH₂NH₂; k_{WM1} and k_{WM2} were respectively denoted the rate coefficients for the reactions of SO₃ with OH and NH₂ moieties in HOCH₂CH₂NH₂; k_{WM1} and k_{WM2} were respectively denoted the rate coefficients for the reactions of SO₃ with OH and NH₂ moieties in HOCH₂CH₂NH₂; k_{WM1} and k_{WM2} were respectively denoted the rate coefficients for the reactions of SO₃ with OH and NH₂ moieties in HOCH₂CH₂NH₂; k_{WM1} in the presence of H₂O.

As for the $SO_3 + MEA$ reaction with water, the effect of HIR plays a minor role in the gasphase reactions of SO_3 with OH (Channel WM1) and NH_2 (Channel WM2) moieties of MEA. As compared with the effect of HIR in Channels R1 and R2 without water, the effect of HIR in Channels WM1 and WM2 is further reduced. This can be explained as follows. On the one hand, the pre-reactive complexes, products and transition states involved in the $SO_3 + MEA$ reaction with water were shown the quasi-planar ring structures and cage-like ring structures. As compared with the naked reaction (Fig. 1), these ring structures reduce the ring tension obviously and increase the stability of the pre-reactive complexes, products and transition states greatly. On the other hand, the numbers of hydrogen bonds in H₂O-assisted pre-reactive complexes, products and transition states were increased, which hinder the rotation bonds of S-O1, H1-O5 and H8-O3 (Channel WM1) and S-N, H7-O5 and H8-O2 (Channel WM1) in H₂O-assisted pre-reactive complexes, products and transition states (Fig. 2).

C1 1	Altitude (km)		0 km				5 km	10 km	15 km	
Channels	<i>T</i> (K)	280.0 K	290.0 K	298.0 K	300.0 K	310.0 K	320.0 K	259.3 K	229.7 K	212.6 K
Channel R1	k_{bR1}	1.73×10^{-18}	1.30×10^{-18}	1.09 × 10 ⁻¹⁸	1.04×10^{-18}	8.94 × 10 ⁻¹⁹	8.07×10^{-19}	4.18×10^{-18}	3.09×10^{-17}	1.72×10^{-16}
Channel R2	k_{bR2}	6.53 × 10 ⁻¹⁵	3.52×10^{-15}	2.32×10^{-15}	2.10×10^{-15}	1.37×10^{-15}	9.63 × 10 ⁻¹⁶	3.53 × 10 ⁻¹⁴	1.10 × 10 ⁻¹²	1.83 × 10 ⁻¹¹
Channel WM1	$k_{b{ m WM1}}$	6.49 × 10 ⁻⁵	2.37×10^{-5}	1.12×10^{-5}	9.31 × 10 ⁻⁶	3.89×10^{-6}	1.71×10^{-6}	$6.95 imes 10^{-4}$	3.83 × 10 ⁻²	0.68
Channel WM2	$k_{b m WM2}$	9.08 × 10 ⁻²	2.41 × 10 ⁻²	8.94 × 10 ⁻³	7.03×10^{-3}	2.22×10^{-3}	7.58×10^{-4}	2.08	4.23 × 10 ⁻²	$1.98 imes 10^{-4}$

Table S6 Rate coefficients (cm³·molecule⁻¹·s⁻¹) for the SO₃ + HOCH₂CH₂NH₂ reaction without and with H₂O calculated within 212.6-320.0 K^a

^a k_{bR1} and k_{bR2} were respectively denoted the rate coefficients for the reactions of SO₃ with OH and NH₂ moieties in HOCH₂CH₂NH₂ by the steady-state approximation; k_{bWM1} and k_{bWM2} were respectively denoted the rate coefficients for the reactions of SO₃ with OH and NH₂ moieties in HOCH₂CH₂NH₂ in the presence of H₂O by the steady-state approximation.

Part S1 Calculations of rate coefficients in the gas phase

The ILT methods ^[1,2] and RRKM theory ^[3,4] can be respectively expressed in equations (S1) and (S2), respectively.

$$k(T) = \frac{1}{Q(\beta)} \int_0^\infty k(E) \rho(E) \exp(-\beta E) dE$$
(S1)

$$k(E) = \frac{W(E - E_0)}{h\rho(E)}$$
(S2)

Where $W(E-E_0)$ is the rovibrational sum of states at the optimized transition state (TS) geometry (excluding the degree of freedom associated with passage through the TS), E_0 is the reaction threshold energy, h is Planck's constant, $\rho(E)$ is the active (ro-vibrational) density of state of the reactant at energy level E and $Q(\beta)$ is the corresponding canonical partition function. Meanwhile, Meanwhile, the tunneling effect was treated in RRKM calculation by employing a onedimensional asymmetrical Eckart potential. The collisional energy-transfer process was computed

with the temperature-dependent exponential-down model with $\langle \Delta E_{down} \rangle = 75 \times \left(\frac{T}{300}\right)^{1.05}$ cm⁻¹, with N₂ as the bath gas ^[5,6]. The Lennard-Jones (L-J) parameters of epsilon $\varepsilon/k_{\rm B} = 218.1$ K and sigma $\sigma = 3.13$ Å were used for SO₃, while the parameters of epsilon $\varepsilon/k_{\rm B} = 470.6$ K and sigma $\sigma = 4.41$ Å were estimated for MEA.

References

- Kumar, A., Mallick, S., Kumar, P., Oxidation of HOSO by Cl: a new source of SO₂ in the atmosphere? *Phys. Chem. Chem. Phys.*, **2021**, *23*, 18707-18711.
- [2] Horváth, G., Horváth, I., Almousa, S. A. D., Telek, M., Numerical inverse laplace transformation using concentrated matrix exponential distributions. *Perform. Evaluation*, 2020, 137, 102067.
- [3] Mai, T. V. T., Duong, M. V., Nguyen, H. T., Huynh, L. K., Ab initio kinetics of the $HOSO_2 + {}^{3}O_2 \rightarrow SO_3 + HO_2$ reaction. *Phys. Chem. Chem. Phys.* **2018**, *20*, 6677-6687.
- [4] Mallick, S., Kumar, A., Kumar, P., Oxidation of HOSO by NH₂: A new path for the formation of an acid rain precursor. *Chem. Phys. Lett.* 2021, 773, 138536.
- [5] Mai, T. V. T.; Nguyen, H. T.; Huynh, L. K. J. P. C. C. P., Ab initio dynamics of hydrogen abstraction from N₂H₄ by OH radicals: an RRKM-based master equation study. *Phys. Chem. Chem. Phys.* 2019, 21, (42), 23733-23741.
- [6] Mai, T. V. T.; Nguyen, H. T.; Huynh, L. K. J. A. E., Kinetics of hydrogen abstraction from CH₃SH by OH radicals: An ab initio RRKM-based master equation study. *Atmos. Environ.* 2020, 242, 117833.

<i>T</i> (K)	$SO_3 + HOCH_2CH_2NH_2$ $\rightarrow SO_3 \cdots HOCH_2CH_2NH_2$	$SO_3 + HOCH_2CH_2NH_2$ $\rightarrow SO_3 \cdots NH_2CH_2CH_2OH$	$SO_3 + HOCH_2CH_2NH_2 + H_2O$ $\rightarrow SO_3 \cdots HOCH_2CH_2NH_2 \cdots H_2O$
212.6	6.74×10^{-11}	6.20×10^{-11}	4.52×10^{-11}
229.7	$7.01 imes 10^{-11}$	6.45×10^{-11}	$4.69 imes 10^{-11}$
259.3	$7.44 imes 10^{-11}$	6.84×10^{-11}	$4.98 imes 10^{-11}$
280.0	7.73×10^{-11}	7.11 × 10 ⁻¹¹	$5.18 imes 10^{-11}$
290.0	$7.87 imes 10^{-11}$	7.24×10^{-11}	$5.27 imes 10^{-11}$
298.0	$7.98 imes 10^{-11}$	7.34×10^{-11}	$5.34 imes 10^{-11}$
300.0	$8.00 imes 10^{-11}$	7.36×10^{-11}	5.36 × 10 ⁻¹¹
310.0	8.13×10^{-11}	7.48×10^{-11}	$5.45 imes 10^{-11}$
320.0	8.23×10^{-11}	7.60×10^{-11}	5.54×10^{-11}
	$SO_3 + HOCH_2CH_2NH_2 + H_2O$	$SO_3 + C_2H_5OH$	$SO_3 + C_2H_5NH_2$
$T(\mathbf{K})$	\rightarrow SO ₃ ···NH ₂ CH ₂ CH ₂ OH····H ₂ O	\rightarrow SO ₃ ····C ₂ H ₅ OH	\rightarrow SO ₃ ····C ₂ H ₅ NH ₂
212.6	5.95×10^{-11}	8.06×10^{-11}	$5.24 imes 10^{-11}$
229.7	6.18×10^{-11}	8.37×10^{-11}	$5.45 imes 10^{-11}$
259.3	6.56×10^{-11}	8.89×10^{-11}	$5.78 imes 10^{-11}$
280.0	$6.82 imes 10^{-11}$	9.24×10^{-11}	$6.01 imes 10^{-11}$
290.0	$6.94 imes 10^{-11}$	9.40×10^{-11}	6.12×10^{-11}
298.0	$7.04 imes 10^{-11}$	9.53 × 10 ⁻¹¹	6.20×10^{-11}
300.0	$7.06 imes 10^{-11}$	9.56 × 10 ⁻¹¹	6.22×10^{-11}
310.0	$7.18 imes 10^{-11}$	9.72×10^{-11}	6.32×10^{-11}
320.0	7.29×10^{-11}	9.88×10^{-11}	6.42×10^{-11}

Table S7 The high-pressure limiting rate coefficients (cm³·molecule⁻¹·s⁻¹) for the reaction of SO₃ with C_2H_5OH and $C_2H_5NH_2$, along with the reactions between SO₃ and the OH and NH₂ molecules of HOCH₂CH₂NH₂ without and with H₂O within 212.6-320.0 K

Catalysts	Altitude (km)		0 km				5 km	10 km	15 km	
	<i>T</i> (K)	280.0 K	290.0 K	298.0 K	300.0 K	310.0 K	320.0 K	259.3 K	229.7 K	212.6 K
Channel R1a	$k_{ m R1a}$	5.46 × 10 ⁻¹⁸	5.63 × 10 ⁻¹⁸	5.81 × 10 ⁻¹⁸	5.86 × 10 ⁻¹⁸	6.16 × 10 ⁻¹⁸	6.54 × 10 ⁻¹⁸	5.58 × 10 ⁻¹⁸	6.27 × 10 ⁻¹⁸	7.41 × 10 ⁻¹⁸
Channel R2a	$k_{ m R2a}$	2.89×10^{-15}	3.52×10^{-15}	4.10×10^{-15}	4.25 × 10 ⁻¹⁵	5.07×10^{-15}	5.97 × 10 ⁻¹⁵	3.11 × 10 ⁻¹⁵	2.89×10^{-15}	3.87×10^{-15}
Channel a	k_{a}	3.22 × 10 ⁻¹²	2.79 × 10 ⁻¹²	2.48 × 10 ⁻¹²	2.41 × 10 ⁻¹²	2.09 × 10 ⁻¹²	1.81 × 10 ⁻¹²	4.24 × 10 ⁻¹²	6.32 × 10 ⁻¹²	7.81 × 10 ⁻¹²

 $\label{eq:solution} \textbf{Table S8} \ \text{Rate coefficients} \ (\text{cm}^3 \cdot \text{molecule}^{-1} \cdot \text{s}^{-1}) \ \text{for the reaction of SO}_3 \ \text{with} \ \text{C}_2 \text{H}_5 \text{OH}, \ \text{C}_2 \text{H}_5 \text{NH}_2 \ \text{and} \ 2\text{H}_2 \text{O} \ \text{calculated} \ \text{by} \ \underline{\text{master equation within 212.6-320.0 K^a}} \ \underline{\text{Master equation wit$

^a k_{R1a} , k_{R2a} and k_a was respectively denoted the rate coefficients for the SO₃ + C₂H₅OH, SO₃ + C₂H₅NH₂ and SO₃ + 2H₂O reactions.

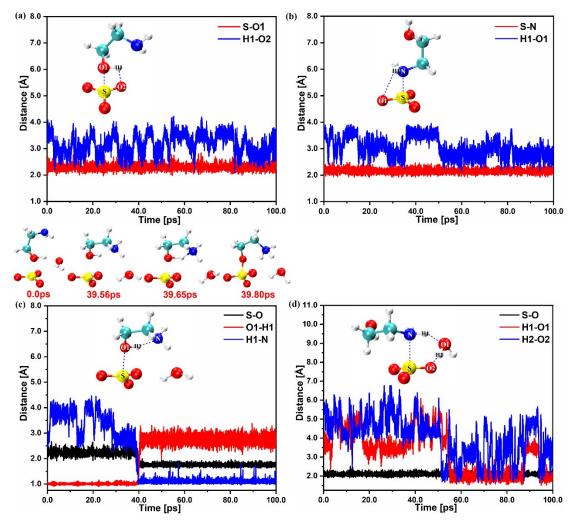
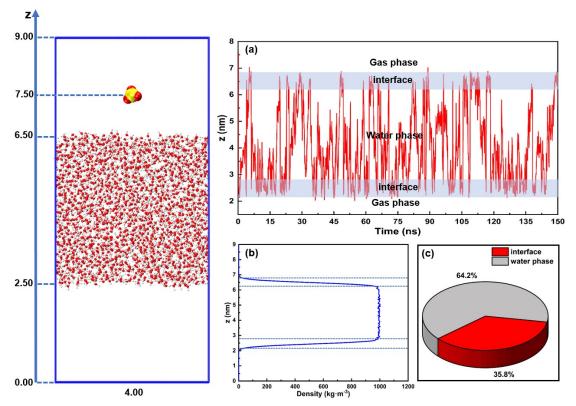
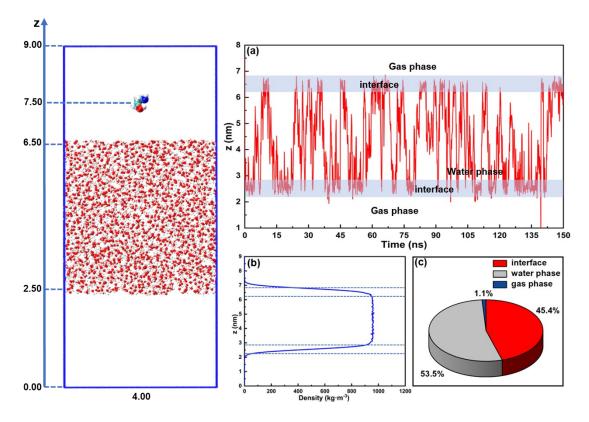
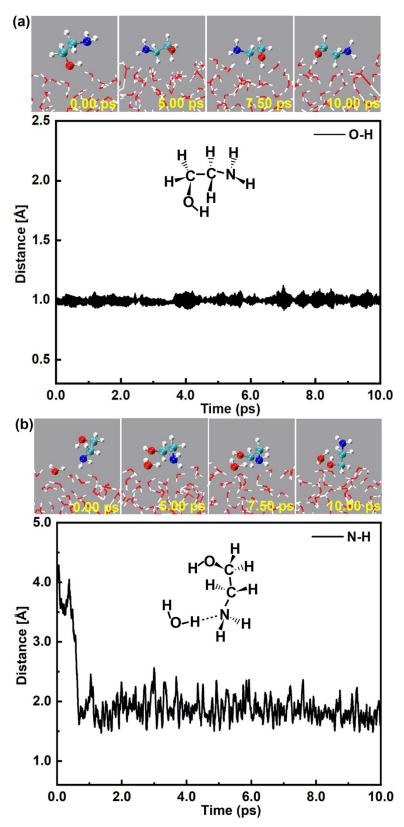
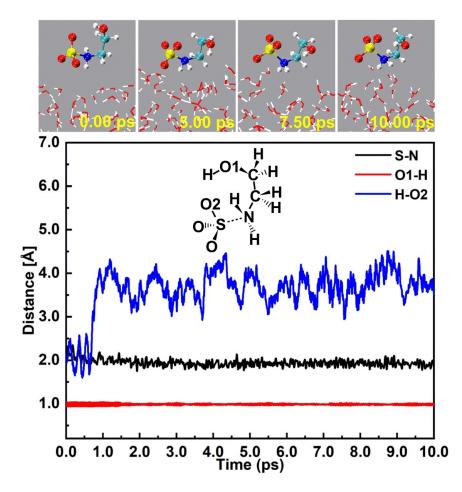
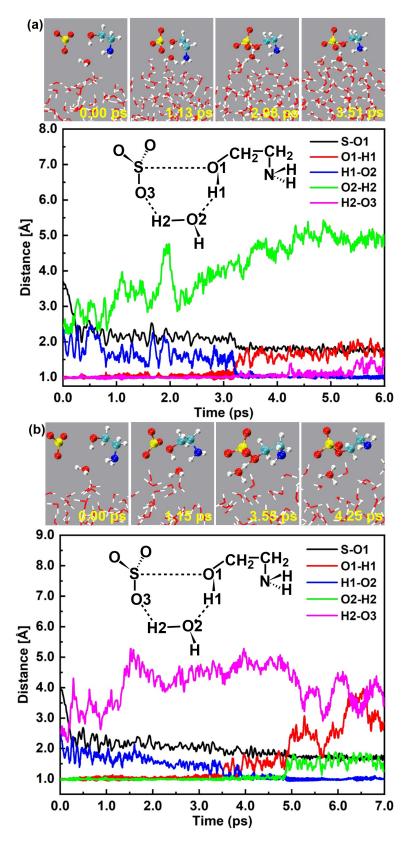
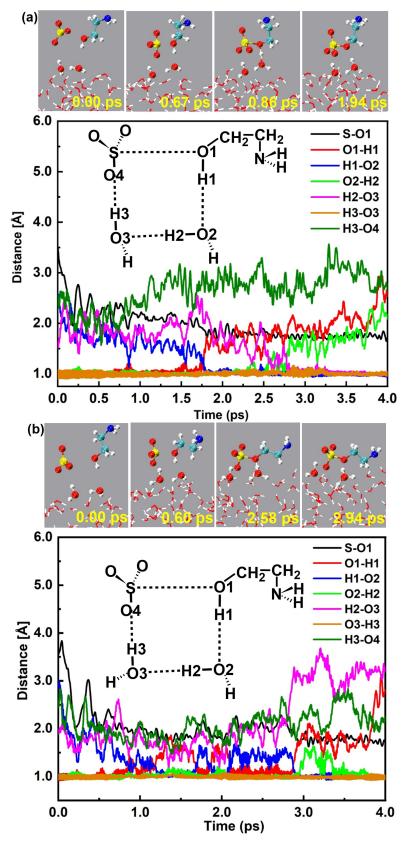


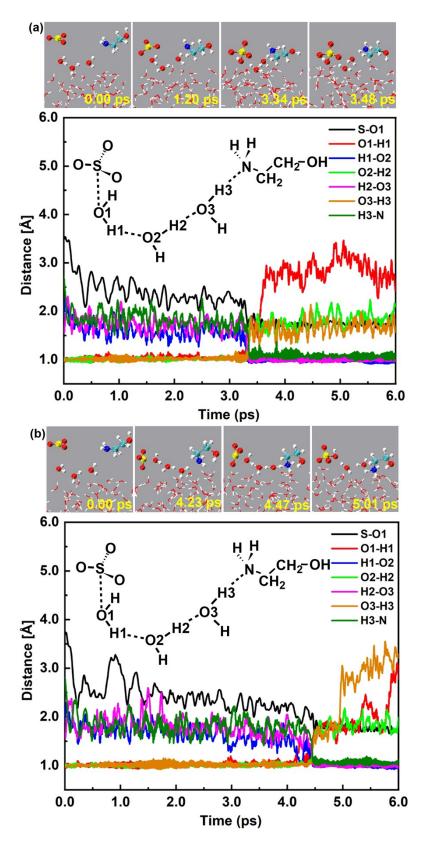
Fig. S6 The dynamic trajectories of the gas-phase reaction of SO_3 with OH and NH_2 moieties of MEA without and with H_2O (The white, red, yellow, gray and blue spheres represent H, O, S, C and N atoms, respectively.)

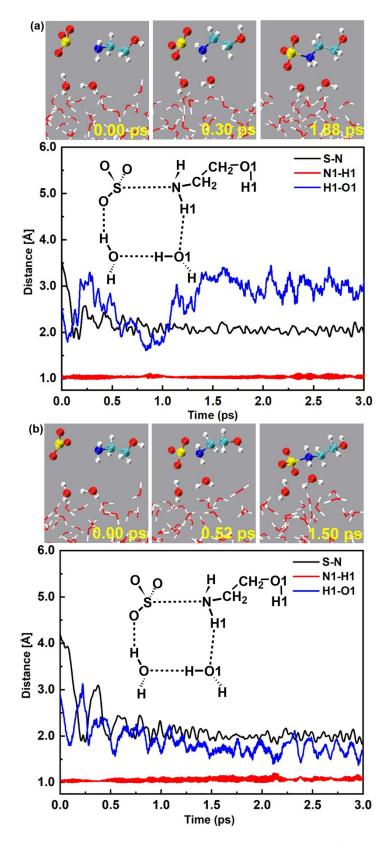





Fig. S7 The z coordinates of SO_3 as the function of simulation time (a) the z coordinates of SO_3 molecule as the function of simulation time; (b) the density profile of water and (c) the pie chart with the occurrence percentages of SO_3 molecule at the air-water interface and in water phase


Fig. S8 The z coordinates of MEA as the function of simulation time (a) the z coordinates of MEA molecule as the function of simulation time; (b) the density profile of water and (c) the pie chart with the occurrence percentages of MEA molecule at the air-water interface, in water phase and gas phase


Fig. S9 The simulated trajectories of the formation of HOCH₂CH₂NH₂ and NH₂CH₂CH₂OH molecules on water droplet (The white, red, yellow, cyan, and blue spheres represent H, O, S, C and N atoms, respectively.)


Fig. S10 The simulated trajectories of the formation of SO₃-NH₂CH₂CH₂OH molecule on water droplet (The white, red, yellow, cyan, and blue spheres represent H, O, S, C and N atoms, respectively.)


Fig. S11 BOMD simulation trajectories and snapshots of $NH_2CH_2CH_2SO_4 \cdots H_3O^+$ ion pair from the reaction between SO₃ and HOCH₂CH₂NH₂ with one interfacial water molecule on water droplet (The white, red, yellow, cyan, and blue spheres represent H, O, S, C and N atoms, respectively.)

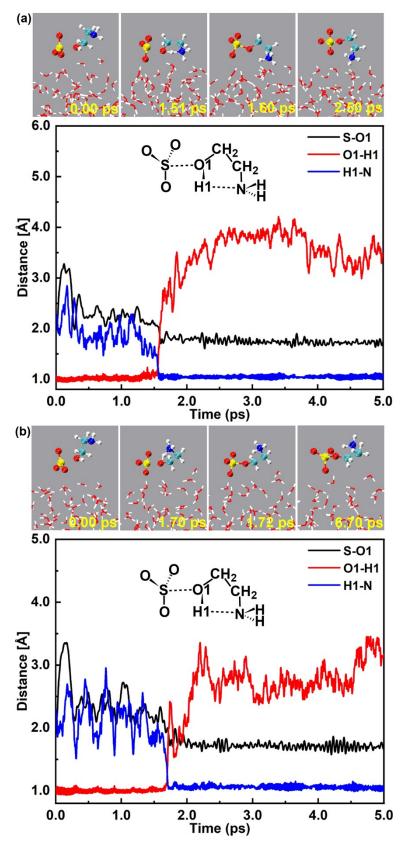

Fig. S12 BOMD simulation trajectories and snapshots of $NH_2CH_2CH_2SO_4 \cdots H_3O^+$ ion pair from the reaction between SO₃ and HOCH₂CH₂NH₂ with two interfacial water molecules on water droplet (The white, red, yellow, cyan, and blue spheres represent H, O, S, C and N atoms, respectively.)

Fig. S13 BOMD simulation trajectories and snapshots of HSO_4^- and $HOCH_2CH_2NH_3^+$ ion from SO_3 , $HOCH_2CH_2NH_2$ and three interfacial water molecules on water droplet (The white, red, yellow, cyan, and blue spheres represent H, O, S, C and N atoms, respectively.)

Fig. S14 BOMD simulation trajectories and snapshots of $HOCH_2CH_2NH_2^+$ -SO₃⁻ ion pair from the reaction between SO₃ and $HOCH_2CH_2NH_2$ on water droplet (The white, red, yellow, cyan, and blue spheres represent H, O, S, C and N atoms, respectively.)

Fig. S15 BOMD simulation trajectories and snapshots of SO_3 ⁻-OCH₂CH₂NH₃⁺ ion pair from the SO_3 -HOCH₂CH₂NH₂ complex on water droplet (The white, red, yellow, cyan, and blue spheres represent H, O, S, C and N atoms, respectively.)

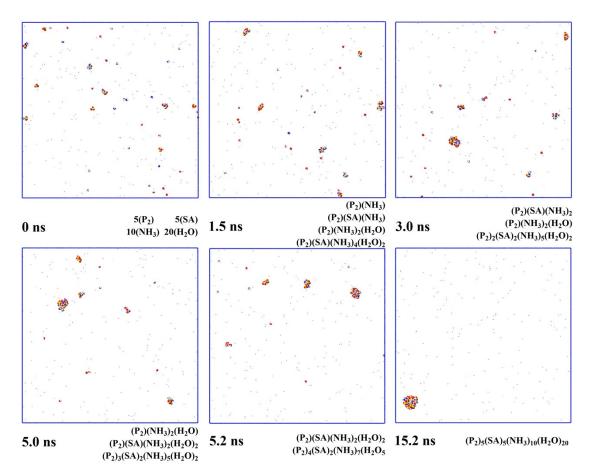


Fig. S16 Snapshots of the nucleation simulation from the product of reaction of SO_3 with NH_2 moiety of $HOCH_2CH_2NH_2$