Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Polytelluride square planar chain induced anharmonicity results in ultralow thermal conductivity and high thermoelectric efficiency in Al₂Te₅ monolayers

Iraj Maleki¹, S. Mehdi Vaez Allaei^{1,2*}, and S. Shahab Naghavi^{3*}

¹Department of Physics, University of Tehran, Tehran 14395-547, Iran ²New Uzbekistan University, Movarounnahr Street 1, Tashkent 100000, Uzbekistan ³Shahid Beheshti University, Department of Physical and Computational Chemistry, Shahid Beheshti University, G.C., Evin, 1983969411 Tehran, Iran E-mail: smvaez@ut.ac.ir E-mail: s_naghavi.sbu.ac.ir

Fig S1: Convergence test for κ_L as function of q-point grid and interaction cutoff.

Fig S 2: Electron localization function (ELF) plots of Al_2Te_3 and Al_2Te_5 from different view-points.

Fig S3: Accumulative κ_L versus frequency for Al₂Te₃ and Al₂Te₅ at 300K. The figure reveals that lattice thermal transport is dominated by phonon modes with frequencies less than 40 cm⁻¹ and 100 cm⁻¹ for Al₂Te₃ and Al₂Te₅, respectively.

Fig S4: Overlay of the HSE and PBE+SOC band structures of Al_2Te_3 and Al_2Te_5 . To simplify the comparison, the right panel shifts the PBE band gap by 0.697 eV for Al_2Te_3 and 0.651 eV for Al_2Te_5 . The HSE-calculated band structure of Al_2Te_5 exhibits enhanced valley degeneracy and changes in band curvature, while its CB and also that of Al_2Te_3 remains similar to the PBE-calculated one.

Fig S5: PBE+SOC functional atom-projected band structures, density of states, and COBI plots for Al_2Te_5 (left panel) and Al_2Te_3 (right panel). The inset in the band structure plot of Al_2Te_5 depicts the charge decomposition of the valence band maximum (VBM) and conduction band minimum (CBM).

Fig S 6: Thermoelectric properties of Al_2Te_5 and Al_2Te_3 along the a- and b-axes were calculated using the HSE functional and the constant relaxation time approximation (CRTA) with a relaxation time of $\tau = 1 \times 10^{-14}$ s.

Fig S 7: The electron and hole thermoelectric properties of Al_2Te_5 and Al_2Te_3 along the aand b-axes were calculated using the PBE+SOC functional and the constant relaxation time approximation (CRTA) with a relaxation time of $\tau = 1 \times 10^{-14}$ s.

	Lable	\mathbf{k}_x	k_y	\mathbf{k}_{z}
	Γ	0.0000	0.0000	0.0000
$\mathbf{Al}_{2}\mathbf{Te}_{5}$	S	0.5000	0.5000	0.0000
	Х	0.5000	0.0000	0.0000
	Y	0.0000	0.5000	0.0000
$\mathbf{Al}_{2}\mathbf{Te}_{3}$	Γ	0.0000	0.0000	0.0000
	Х	0.5000	0.0000	0.0000
	S	0.5000	0.5000	0.0000
	Y	0.0000	0.5000	0.0000

Table S1: The high symmetry k-points coordinates used for representation band structure and phonon dispersion.

Fig S8: Calculated Seebeck coefficients (S), electrical conductivity (σ), and power factor (PF) of Al₂Te₅ and Al₂Te₃ using PBE and HSE methods at 700K. The HSE-calculated S is larger than that of PBE due to its dependence on the band gap. However, if the band gap widens, akin to the scissor operator, the enhancement of S and σ counterbalances, leaving PF unchanged—a critical factor for determining zT. Al₂Te₃ exemplifies this behavior. However, in Al₂Te₅, HSE alters the band curvature and increases the valley degeneracy of VB, slightly enhancing the p-type PF while leaving the CB and n-type PF unchanged.

Fig S 9: The electron and hole thermoelectric properties of Al_2Te_5 along the a- and b-axes were calculated using the PBE+SOC functional and accurate relaxation time that contain all scattering rates.

Fig S10: Accumulative κ_L versus mean free path for Al₂Te₃ and Al₂Te₅ at 300K. As the figure illustrates, lattice thermal transport could decrease by half with nanostructuring at sizes of approximately 500 nm and 50 nm for Al₂Te₃ and Al₂Te₅, respectively.

Fig S11: The calculated phonon lifetimes correspond to the phonon frequency at 300K for both materials. As the figures clearly depict, the phonon lifetime for Al_2Te_5 is almost one order of magnitude lower than that for Al_2Te_3 , resulting in higher scattering rates and lower phonon thermal transport in Al_2Te_5 .