Supporting information

Magnetic resonance imaging: An innovative approach to observe

rare metal extraction using ionic liquid

Arunkumar Dorai, *^a Mrutyunjay Panigrahi,^{a,b} Nithya Hellar,^a Yoshiki Iwai^{a,c} and Junichi

Kawamura^{a,}*

- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
- b. School of Mechanical Engineering, Vellore Institute of Technology, Chennai-600127, India.
- c. Technology and Innovation Division, Panasonic Corporation, Osaka, Japan

E-mail: dorai.arunkumar.c7@tohoku.ac.jp; junichi.kawamura.a8@tohoku.ac.jp

Nomenclature	Sample Description		
TTPB	Ionic liquid		
DIW	Ionic liquid + water		
Nd5	Ionic liquid + 5 mg $NdCl_3$		
Nd10	Ionic liquid + 10 mg NdCl ₃		
Nd25	Ionic liquid $+ 25 \text{ mg NdCl}_3$		
Nd50	Ionic liquid + 50 mg NdCl ₃		
Nd75	Ionic liquid + 75 mg $NdCl_3$		
Nd100	Ionic liquid + 100 mg NdCl_3		
Nd300	Ionic liquid + 300 mg NdCl ₃		
Nd500	Ionic liquid + 500 mg NdCl ₃		

Table S1: Nomenclature of the prepared samples.

Table S2: ¹H NMR peak position for TTPB ionic liquid and Nd containing complexes.

	Peak Position (ppm)							
Sample	CH_3	CH _(2-all)	$CH_{2(1)}$	H_2O	Meta, Para (m,p)	Ortho (o)		
TTPB	0.97	1.38	2.57	4.69	7.19	8.07		
DIW	0.94	1.39	2.25	4.69	7.27	8.12		
Nd5	1.16	1.61	2.45	4.89	7.49	8.35		
Nd10	1.26	1.70	2.55	4.98	7.59	8.46		
Nd25	1.74	2.18	3.01	5.40	8.09	8.99		
Nd50	2.50	2.94	3.74	6.05	8.88	9.86		
Nd75	3.32	3.76	4.52	6.76	9.73	10.76		
Nd100	4.06	4.47	5.18	7.36	10.48	11.57		
Nd300	4.34	4.75	5.60	7.36	10.86	12.06		

Table S3. T₁ relaxation time for the neodymium containing complexes.

	T ₁ relaxation time (s)						
Sample		Cation			Anion		
Code	t-CH ₃	CH _{2(2-all)}	CH ₂₍₁₎	H ₂ O	Meta, Para	Ortho	
TTPB	0.47	0.40	0.38	0.32	0.5	0.48	
DIW	0.56	0.39	0.31	0.31	0.62	0.64	
Nd5	0.54	0.38	0.27	0.23	0.57	0.47	
Nd10	0.53	0.38	0.28	0.24	0.56	0.49	
Nd25	0.53	0.38	0.27	0.19	0.54	0.39	
Nd50	0.49	0.36	0.26	0.13	0.46	0.28	
Nd75	0.44	0.34	0.25	0.10	0.39	0.23	
Nd100	0.40	0.32	0.24	0.08	0.34	0.20	
Nd300	0.41	0.33	0.23	0.06	0.28		

	T ₂ relaxation time (ms)						
Sample		Cation			Anion		
Code	t-CH ₃	CH _{2(2-all)}	CH ₂₍₁₎	H ₂ O	Meta, Para	Ortho	
TTPB	37.82	22.57	5.16	-	25.00	20.35	
DIW	119.50	73.60	32.14	169.83	134.60	130.00	
Nd5	71.81	47.65	18.43	22.02	50.30	25.40	
Nd10	47.36	34.07	16.99	27.32	44.04	30.63	
Nd25	51.75	35.29	12.25	15.92	32.30	13.68	
Nd50	37.25	25.41	6.60	7.80	19.54	6.14	
Nd75	28.18	20.19	4.12	5.44	13.94	3.45	
Nd100	16.85	12.64	3.11	3.68	8.84	2.43	
Nd300	22.45	16.32	3.37	3.37	5.56	1.71	

Table S4. T₂ relaxation time for the neodymium containing complexes.

Table S5: TR dependence of MRI signal intensity at different Nd concentrations with fixed

TE of 5.7ms

	Repetition Time (TR)						
	300 ms	500 ms	1000 ms	1500 ms	5000 ms	50000 ms	
Nd 10mg		0	0	0	0	0	
Nd 25mg		0		0	0	•	
Nd 75mg							

Figure S1. ³¹P NMR spectra of neodymium containing complexes.

³¹P NMR spectra for the neodymium containing ionic liquid complexes are shown in Fig. S1. A small amount of phosphonium impurities were observed in the samples along with the TTP cation as reported earlier³⁵. The peaks are shifted down field similar to the ¹H NMR signals due to the very strong dipolar interaction exerted by neodymium ion on the cation.

Fig. S2. ¹H MRI acquired after ~10h of 10mg Nd extraction using TTPB IL

Fig. S3. Pulse scheme for the MSME imaging pulse sequence used in this study. G_{RO}, G_{PE} and G_{SS} are the magnitudes of the read-out, phase-encoding and slice-selective gradients respectively. TE is the echo time and n is the number of echoes.

Fig. S4. TR dependence of MRI signal intensity