Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supplementary Information

Thermally Activated Delayed Fluorescence Emitters for Efficient Sensitization of Europium (III)

Neena K Kalluvettukuzhy, Michal R Maciejczyk, Neil Robertson* EaStCHEM School of Chemistry University of Edinburgh Kings Buildings, Edinburgh EH9 3FJ, U.K E-mail: <u>Neil.Robertson@ed.ac.uk</u>

Table of Contents

Section	Pages
Spectral characterization	S2-S8
Optical properties	S9-S25
Sensitization mechanism	S25-S26
References	S26

Ligands			Complex		
	¹⁹ F δ (ppm)	³¹ P δ (ppm)		¹⁹ F δ (ppm)	³¹ Ρ δ (ppm)
tta	-75.7	-	Eutta ₃ .2H ₂ O	-82.3	-
1L	-	28.38 – 28.26 (m)	1	-79.7	-76.5
2L	-	28.37 – 28.52 (m)	2	-79.5	-76.3
3L	-	28.58 – 28.43 (m)	3	-79.5	-75.9

Table S1: Comparison of the ¹⁹F and ³¹P chemical shift values of ligands and complexes

Figure S1. $^{19}\mathrm{F}$ NMR spectra of Eu(III) coordination polymer 1 in C_6D_6 at 25 $^{\circ}\mathrm{C}$

Figure S3. ^{19}F NMR spectra of Eu(III) coordination polymer 2 in C_6D_6 at 25 °C

Figure S4. ^{31}P NMR spectra of Eu(III) coordination polymer 2 in C_6D_6 at 25 $^{\circ}\text{C}$

Figure S7. ESI-MS of Eu(III) coordination polymer 1

Figure S8. ESI-MS of Eu(III) coordination polymer 2

Figure S9. ESI-MS of Eu(III) coordination polymer 3

Figure S10. IR spectra of Eu (III) coordination polymer 1 and corresponding ligands

Figure S11. IR spectra of Eu (III) coordination polymer 2 and corresponding ligands

Figure S12. IR spectra of Eu (III) coordination polymer 3 and corresponding ligands

Figure S13. Thermo-Gravimetric Analysis (TGA) of Eu (III) coordination polymer 1, 2 and 3

Optical Properties

Figure S14. UV-Vis absorption and luminescence spectra of TADF ligands (SFX-PO-DPA is 1L, SFX-PO-DPA-Me is 2L and SFX-PO-DPA-OMe is 3L) in toluene solution (Adapted from ref 1, Copyright, 2021, American Chemical Society).¹

Figure S15. Comparison of UV-Vis absorption spectra of tta, TADF ligands (1L, 2L, and 3L) and corresponding Eu(III) coordination polymers (1, 2 and 3) in toluene solution

Figure S16. Excitation and luminescence spectra of (a) 1 (b) 2 in toluene solution (λ_{ex} = 340 nm and λ_{em} = 611 nm)

Figure S17. Luminescence decay profiles of complexes 1 and 2 in toluene solution (λ_{ex} =340 and λ_{em} =611 nm)

Figure S18. UV-Vis absorption spectra of powder samples of 1-3

Figure S19. Excitation and luminescence spectra of (a) 1 (b) 2 powder samples (λ_{ex} = 340 nm and λ_{em} = 611 nm)

Figure S20. Luminescence decay profiles of powder samples of complexes 1 and 2 (λ_{ex} =340 and λ_{em} =611 nm)

Figure S21. Absolute luminescence quantum yield measurements of solid samples of 1 (λ_{ex} =340)

Figure S22. Absolute luminescence quantum yield measurements of solid samples of 2 (λ_{ex} =340)

Figure S23. Absolute luminescence quantum yield measurements of solid samples of 3 (λ_{ex} =340)

Figure S24. UV-Vis absorption spectra of PMMA encapsulated films of 1-3

Figure S25. Excitation and luminescence spectra of PMMA encapsulated films (a) **1** and (b) **3** (λ_{ex} = 340 nm and λ_{em} = 611 nm)

Figure S26. Luminescence decay profiles of complexes 1 and 2 in PMMA films (λ_{ex} =340 and λ_{em} =611 nm)

Figure S27. Absolute luminescence quantum yield measurements of PMMA encapsulated films of 1 (λ_{ex} =340)

Figure S28. Absolute luminescence quantum yield measurements of PMMA encapsulated films of 2 (λ_{ex} =340)

Figure S29. Absolute luminescence quantum yield measurements of PMMA encapsulated films of 3 (λ_{ex} =340)

Figure S30. Luminescence spectra of PMMA encapsulated films of 1 at different excitations in the region 300-450 nm

Figure S31. Luminescence spectra of PMMA encapsulated films (a) 1 (b) 2 and (c) 3 (λ_{ex} = 400 nm)

Figure S32. Luminescence decay profiles of 1-3 in PMMA encapsulated films (λ_{ex} =400 and λ_{em} =611 nm)

Figure S33. Absolute luminescence quantum yield measurements of PMMA encapsulated films of 1 (λ_{ex} =400)

Figure S34. Absolute luminescence quantum yield measurements of PMMA encapsulated films of 2 (λ_{ex} =400)

Figure S35. Absolute luminescence quantum yield measurements of PMMA encapsulated films of 3 (λ_{ex} =400)

	$\tau_{Ln}(ms)^a$	$\tau_R(ms)^b$	$\Phi_{\mathrm{Ln}}(\%)^{\mathrm{c}}$	Φ_{tot} (%) ^d	$\eta_{\rm sen}$ (%) ^e	$k_{\rm r} ({\rm s}^{-1})^{{ m f}}$	$k_{\rm nr}~({\rm s}^{-1})^{\rm g}$
1	0.52	1.14	90	38	42	0.9×10 ³	1.1×10 ³
2	0.56	1.17	88	36	41	0.9×10 ³	0.9×10^{3}
3	0.52	1.16	91	39	43	0.9×10 ³	1.1×10 ³

Table S2. Photophysical properties of 1–3 (λ_{ex} = 400 nm and λ_{em} = 611 nm).

^aLanthanide luminescence lifetime obtained from TRPL spectra. ^bradiative lifetime τ_{R_c} ^Cthe intrinsic luminescence quantum yield $\Phi_{Ln} = \tau_{Ln}/\tau_{R_r}$, ^dtotal luminescence quantum yields (Φ_{tot}), ^esensitization efficiency $\eta_{sen} = \Phi_{tot} / \Phi_{Ln}$, ^fradiative decay rate constant $k_r = 1/\tau_R$ and ^gnon-radiative decay rate constant, $k_{nr} = (\tau_R - \tau_{Ln}) / \tau_R \tau_{Ln}$.²³

Figure S36. The mechanistic energy transfer pathways in the tta and TADF-ligand (1L) sensitized Eu(III) luminescence of coordination polymer 1 (energy levels are not up to the scale).

Figure S37. The mechanistic energy transfer pathways in the tta and TADF-ligand (2L) sensitized Eu(III) luminescence of coordination polymer 2 (energy levels are not up to the scale).

References

- 1 N. Sharma, M. Maciejczyk, D. Hall, W. Li, V. Liégeois, D. Beljonne, Y. Olivier, N. Robertson, I. D. W. Samuel and E. Zysman-Colman, Spiro-Based Thermally Activated Delayed Fluorescence Emitters with Reduced Nonradiative Decay for High-Quantum-Efficiency, Low-Roll-Off, Organic Light-Emitting Diodes, ACS Appl. Mater. Interfaces, 2021, 13, 44628–44640.
- 2 Y. Kitagawa, M. Tsurui and Y. Hasegawa, Bright red emission with high color purity from Eu(iii) complexes with π -conjugated polycyclic aromatic ligands and their sensing applications, *RSC Adv.*, 2022, **12**, 810–821.
- 3 M. H. V Werts, R. T. F. Jukes and J. W. Verhoeven, The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes, *Phys. Chem. Chem. Phys.*, 2002, **4**, 1542–1548.