Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Electronic Supplementary Information

Stability, Electronic Properties and CO Adsorption Properties of Bimetallic PtAg/Pt(111) Surfaces

Luis A. Mancera, Axel Groß, and R. Jürgen Behm

Institute of Theoretical Chemistry, Ulm University, Oberberghof 7, D-89081 Ulm, Germany

TABLE S1. Formation enthalpies (ΔH), surface energies (E_s) and and estimated surface energies of the top surface ($E_{s,top}$, see text) for pure Pt(111) and Ag(111) surfaces and for Ag_{nL}/Pt(111) pseudomorphic overlayers, varying the number of Ag layers. Surface energies and formation enthalpies are given in meV Å⁻². Ag_{5L}/Pt_{0L} denotes the pure Ag(111) surface, keeping the lateral lattice parameter of Pt(111), whereas Ag_{5L} denotes the pure Ag(111) surface with the Ag lattice parameter. Note the conversion: 1 meV Å⁻² \approx 16.02 \times 10⁻³ J m⁻². For systems with a Pt(111) lattice, 1 meV per surface atom corresponds to 0.1451 meV Å⁻² for a slab of identical thickness (nearest neighbor distance 2.82 Å). Results were obtained using RPBE/PAW (for data derived from PBE/PAW see Table 1).

Ensemble	ΔH	Es	E _{s,top}
Pt _{5L}	0.00	84.9	84.9
Ag_{1L}/Pt_{4L}	-39.2	65.1	45.3
Ag _{2L} /Pt _{3L}	-36.3	66.8	48.7
$Pt_{1L}/Ag_{1L}/Pt_{3L}$	-20.3	74.5	64.1
Ag _{3L} /Pt _{2L}	-30.5	69.7	54.5
Pt _{2L} /Ag _{1L} /Pt _{2L}	+11.6	90.4	95.9
$Pt_{1L}/Ag_{2L}/Pt_{2L}$	-18.9	75.6	66.3
Ag _{5L} /Pt _{0L}		3.4	
Ag _{5L}		36.0	

TABLE S2. Mean enthalpies of formation (upper lines), differential enthalpies of formation (middle lines), and surface energies (bottom lines), for the different PtAg/Ag_{nL}/Pt(111) surface alloys considered. Surface energies and formation enthalpies are given in meV Å⁻² (1 meV A⁻² \approx 16.02 \times 10⁻³ J m⁻²). For systems with a Pt(111) lattice, 1 meV per surface atom corresponds to 0.1451 meV Å⁻² for a slab of identical thickness (nearest neighbor distance 2.82 Å). Results were obtained using RPBE/PAW. For results obtained using PBE/PAW see Table 2.

		Pt ₁	Pt ₂	Pt₃	Pt ₄
	$ heta_{Pt}$	¹ /9	² /9	³ /9	4/9
PtAg/Pt _{4L}	∆H	-34.8	-30.5	-26.1	-21.8
	ΔH_{diff}	-34.8	-26.1	-17.4	-8.7
	Es	67.4	69.5	72.2	74.4
PtAg/Ag _{1L} /Pt _{3L}	∆H	-37.7	-39.2	-40.6	-39.2
	ΔH_{diff}	-37.7	-40.6	-43.5	-34.8
	Es	66.4	65.6	64.8	65.2
PtAg/Ag _{2L} /Pt _{2L}	ΔH	-29.0	-27.6	-27.6	-26.1
	ΔH_{diff}	-29.0	-26.1	-27.6	-21.8
	Es	70.6	71.1	71.1	71.8

Figure S1. Formation enthalpies ΔH in meV Å⁻² for the Pt_{1-x}Ag_x/Ag_{nL}/Pt(111) monolayer surface alloys as a function of the substitution ratio x in the surface layer, i.e., the number of Pt atoms replaced by Ag atoms in the topmost layer relative to the total number of surface atoms (9). The 1-x scale at the upper x-axis describes the fraction of Pt atoms in the topmost layer, which also corresponds to the Pt coverage Θ_{Pt} in the topmost layer. Results were obtained using RPBE/PAW (for similar data obtained by PBE/PAW see Figure 1).

	d-band center	Δ d-band center
Pt(111)	-2.00	
Pt_1Ag_8/Pt_{4L}	-1.48	0.52
Pt_2Ag_7/Pt_{4L}	-1.63	0.37
Pt_3Ag_6/Pt_{4L}	-1.69	0.31
Pt_1Ag_8/Pt_{4L}	-1.48	
$Pt_1Ag_8/Ag_{1L}/Pt_{3L}$	-1.52	0.04
$Pt_1Ag_8/Ag_{2L}/Pt_{2L}$	-1.57	0.09
Ag(111)	-3.87	

Table S3.Center of the d-band and relative shift of the d-band in eV for different PtAg surface alloys.Results were obtained using RPBE/PAW. For results using PBE/PAW see Table 3.

TABLE S4. Mean adsorption CO energies for different Pt_n ensembles, adsorption sites and CO_{ad} coverages on Pt_nAg_{9-n}/Pt_{4L} surface alloys, calculated using RPBE/PAW. The configurations are shown in Figure 3 (Pt₂, Pt₃), Figure 4 (Pt_{3,L}), Figure 5 (Pt_{6,L}), Figure 6 (Pt₁) and Figure 7 (Pt_{2,d}, Pt_{3,d}). Energies are given in eV per CO_{ad} molecule, angles refer to the tilt of the CO molecules with respect to the surface normal (see text. For energies calculated using PBE/PAW see Figures 3-7.

	Site	θ_{co} = 1/9	θ _{co} = 2/9	θ _{co} = 3/9	$\theta_{\rm CO}$ = 4/9
Pt ₁	Т	-1.74 (0.0°)	-	-	-
	B-B	-	-0.72 (26.6°)	-	-
	H-fcc / H-hcp	-	-0.70 (20°)	-	-
Pt ₂	Т	-1.67 (0.1°)	-1.61 (4.3°)	-	-
	В	-1.58 (0.0°)	-	-	-
Pt ₃	Т	-1.66 (-0.3°)	-1.59 (4.4°)	-1.55 (4.3°)	-
	В	-1.58 (-0.1°)	-	-	-
	H-fcc	-1.56 (0.0°)	-	-	-
	H-hcp	-1.54 (0.0°)	-	-	-
Pt _{2,d}	Т	-1.75 (0.0°)	-1.74 (-0.2°)	-	-
Pt _{3,d}	Т	-1.70 (0.0°)	-	-1.76 (0.0°)	-
Pt _{3,L}	Т	-1.40 (0.0°)	-1.57 (5.8°)	-1.32(0.0°)	-
	В	-1.59 (0.0°)	-1.51 (1.8°)	-1.27 (0.0°)	-
Pt _{6,L}	Т	-1.59 (0.0°)	-	-	-
	T _{disperse}	-	-1.53 (0.0°)	-1.43 (3.5°-7.6°)	
	$T_{compact}$	-	-1.52 (5.1°)	-1.44 (4.0°- 7.5°)	-1.40 (4.0°- 7.0°)
	B _{out}	-1.58 (0.0°)	-	-	-
	B _{in}	-1.48 (0.0°)	-	-	-
	H-fcc	moves to B	-	-	-
	H-hcp	-1.48 (0.0°)	-	-	-