Supporting Information

AnB₈⁻: Borozene Complexes with Monovalent Actinide

Wan-Lu Li*a,b and Jordan Burkhardta,c

^a Department of NanoEngineering University of California San Diego La Jolla, CA 92093 (USA)

^b Program of Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093 (USA)

° Department of Chemistry and Biochemistry, University of California San Diego La Jolla, CA 92093 (USA)

E-mail: wal019@ucsd.edu

Computational methods

Geometrical structures of both C_{7v} and C_s isomers were fully optimized using GGA-PBE¹ and hybrid PBE0² density functionals implemented in ADF 2023.102 package³. Vibrational frequencies were calculated to verify the true minimum on the potential energy surface. Slater-type basis sets with triple- ζ and one polarization term (TZP)⁴ were applied treated by frozen-core approximation onto the inner shells [1s²-5d¹⁰] for actinides and [1s²] for boron. To appropriately address the scalar relativistic effect, the zero-order regular approximation (ZORA)⁵ was employed.

To account for the multiconfigurational character, we employed the complete active space self-consistent field method (CASSCF)⁶ combined with a second-order perturbation treatment of dynamic electron correlation (N-electron valence perturbation theory to second order, NEVPT2)⁷⁻¹¹ using the ORCA 5.0.4 package^{12, 13}. We utilized the SARC-TZVP¹⁴ basis set for actinide elements and the def2-TZVP¹⁵ basis set for the B element with the SARC/J¹⁶ fitting basis set to expedite the calculation of integrals. Spin-orbit coupling effects were approximated by an effective one-particle operator^{17, 18}. In AcB₈⁻, the active space comprised one 7s orbital, 6d δ orbitals, 6d π orbitals, and their respective B group orbital counterparts, constituting a CAS (6e, 7o) active space. For other AnB₈⁻ species, the active orbital space consisted of the An 5f, 7s, 6d π and 6d δ valence shell orbitals and the corresponding B orbital counterparts, 14 active orbitals in total.

Electronic structure and chemical bonding analyses were mainly focused on the C_{7v} isomer to determine the stability and oxidation state. To quantitively elucidate the bonding mechanism between An and B₈ moieties, energy decomposition analysis–natural orbitals for chemical valence (EDA–NOCV)^{19, 20} was performed. Another framework, principle interacting orbital (PIO) approach²¹, was also employed to identify the "dominant interacting orbitals" that are semi-localized and chemical-intuitively interpretable utilizing the Gaussian 09 calculation.²² In terms of aromatic properties, we carried out adaptive natural density partitioning (AdNDP) analysis²³ to illustrate the multi-center bonding based on the canonical molecular orbitals. Nucleus-independent chemical shift (NICS)²⁴ index was calculated to quantitively characterize the aromaticity.

References

- 1. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 2. C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- 3. ADF, 2023.102, SCM, Theoretical Chemistry, Vrijie Universiteit, Amsterdam, The Netherlands, (<u>http://www.scm.com</u>).
- 4. E. van Lenthe and E. J. Baerends, J. Comput. Chem., 2003, 24, 1142-1156.
- 5. E. van Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1993, 99, 4597-4610.
- 6. P.-Å. Malmqvist and B. O. Roos, Chem. Phys. Lett., 1989, 155, 189-194.
- M. Atanasov, D. Aravena, E. Suturina, E. Bill, D. Maganas and F. Neese, *Coord. Chem. Rev.*, 2015, 289-290, 177-214.
- 8. C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger and J.-P. Malrieu, J. Chem. Phys., 2001, 114, 10252-10264.
- 9. C. Angeli, R. Cimiraglia and J.-P. Malrieu, Chem. Phys. Lett., 2001, 350, 297-305.
- 10. C. Angeli, R. Cimiraglia and J.-P. Malrieu, J. Chem. Phys., 2002, 117, 9138-9153.
- 11. C. Angeli, B. Bories, A. Cavallini and R. Cimiraglia, J. Chem. Phys., 2006, 124.
- 12. F. Neese, *WIREs Computational Molecular Science*, 2012, **2**, 73-78.
- 13. F. Neese, *WIREs Computational Molecular Science*, 2022, **12**, e1606.
- 14. D. A. Pantazis and F. Neese, J. Chem. Theory Comput., 2011, 7, 677-684.
- 15. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- 16. F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057-1065.
- 17. B. A. Heß, C. M. Marian, U. Wahlgren and O. Gropen, Chem. Phys. Lett., 1996, 251, 365-371.
- 18. F. Neese, J. Chem. Phys., 2005, **122**.
- 19. M. P. Mitoraj, A. Michalak and T. Ziegler, J. Chem. Theory Comput., 2009, 5, 962-975.
- 20. A. Michalak, M. Mitoraj and T. Ziegler, J. Phys. Chem. A, 2008, 112, 1933-1939.
- 21. J.-X. Zhang, F. K. Sheong and Z. Lin, Chem. Eur. J., 2018, 24, 9639-9650.
- 22. M. J. Frisch, et al., Gaussian Inc., Wallingford CT, 2009.
- 23. D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys., 2008, 10, 5207-5217.
- P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. van Eikema Hommes, *J. Am. Chem. Soc.*, 1996, 118, 6317-6318.

Table S1. Fully optimized structures of AnB_8^- (An = Ac, Pa, Bk, Md, No) at PBE0/TZP level. Two types of isomers with pseudo- C_{7v} and C_8 symmetries were tested. AcB₈⁻:

 C_{7v} :

7.B

1.546469

0.362160

1.627389

1.B	-0.396970	1.739241	1.762143
2.B	1.112287	1.394763	1.762143
3.B	1.783969	0.000000	1.762143
4.B	0.000000	0.000000	2.052902
5.B	1.112287	-1.394763	1.762143
6.B	-0.396970	-1.739241	1.762143
7.B	-1.607301	-0.774035	1.762143
8.B	-1.607301	0.774035	1.762143
9.Ac	0.000000	0.000000	-0.821402
$C_{\rm s}$:			
1.B	1.517408	1.691716	-0.801224
2.B	1.692653	0.367626	-1.637180
3.B	1.617565	-1.099883	-0.995673
4.B	2.138835	0.353116	0.000000
5.B	0.771496	-2.058595	0.000000
6.B	1.617565	-1.099883	0.995673
7.B	1.692653	0.367626	1.637180
8.B	1.517408	1.691716	0.801224
9.Ac	-0.685742	-0.006998	0.000000
PaB ₈ -:			
pseudo- C_{7v} :			
1.B	1.556053	-0.396179	-1.719487
2.B	1.358409	-1.617108	-0.781228
3.B	1.358409	-1.617108	0.781228
4.B	1.923721	-0.001767	0.000000
5.B	1.556053	-0.396179	1.719487
6.B	1.475340	1.115520	1.384923
7.B	1.312703	1.810371	0.000000
8.B	1.475340	1.115520	-1.384923
9.Pa	-0.663786	-0.000631	0.000000
$C_{\rm s}$:			
1.B	1.386176	1.680257	-0.795607
2.B	1.546469	0.362160	-1.627389
3.B	1.529131	-1.088204	-0.955225
4.B	2.075723	0.361909	0.000000
5.B	0.560599	-1.967047	0.000000
6.B	1.529131	-1.088204	0.955225

8.B	1.386176	1.680257	0.795607
9.Pa	-0.636608	-0.011234	0.000000

BkB₈⁻:

pseudo- C_{7v} :

1.B	1.678401	-1.610967	-0.775258
2.B	1.678401	-1.610967	0.775258
3.B	1.670734	-0.397316	1.743286
4.B	1.930545	0.000009	0.000000
5.B	1.679962	1.114499	1.398832
6.B	1.667617	1.785984	0.000000
7.B	1.679962	1.114499	-1.398832
8.B	1.670734	-0.397316	-1.743286
9.Bk	-0.701362	-0.000037	0.000000
$C_{\rm s}$:			
1.B	1.329968	1.682028	-0.797744
2.B	1.535546	0.365358	-1.626662
3.B	1.456997	-1.094836	-0.979452
4.B	2.020881	0.365893	0.000000
5.B	0.540712	-1.999899	0.000000
6.B	1.456997	-1.094836	0.979452
7.B	1.535546	0.365358	1.626662
8.B	1.329968	1.682028	0.797744
9.Bk	-0.619564	-0.009360	0.000000

MdB₈-:

pseudo- C_{7v} :

	1.B	1.734964	1.583460	-0.775857
	2.B	1.704207	0.369393	-1.742238
	3.B	1.677811	-1.144113	-1.397312
	4.B	1.943643	-0.033297	0.000000
	5.B	1.673142	-1.818789	0.000000
	6.B	1.677811	-1.144113	1.397312
	7.B	1.704207	0.369393	1.742238
	8.B	1.734964	1.583460	0.775857
	9.Md	-0.732265	0.012428	0.000000
$C_{\rm s}$:			
	1.B	1.639508	1.651446	-0.787871
	2.B	1.630726	0.300382	-1.624246
	3.B	1.688214	-1.182406	-0.942847
	4.B	2.142410	0.255847	0.000000
	5.B	1.618706	-2.473576	0.000000
	6.B	1.688214	-1.182406	0.942847

7.B	1.630726	0.300382	1.624246
8.B	1.639508	1.651446	0.787871
9.Md	-0.724893	0.031387	0.000000

NoB₈-:

 C_{7v} :

1.B	-0.398106	1.744215	-1.561657
2.B	-1.611897	0.776249	-1.561657
3.B	-1.611897	-0.776249	-1.561657
4.B	0.000000	0.000000	-1.799432
5.B	-0.398106	-1.744215	-1.561657
6.B	1.115467	-1.398752	-1.561657
7.B	1.789070	0.000000	-1.561657
8.B	1.115467	1.398752	-1.561657
9.No	0.000000	0.000000	0.880527
$C_{\rm s}$:			
1.B	1.651306	1.661301	-0.788052
2.B	1.636646	0.309283	-1.624381
3.B	1.693222	-1.175176	-0.942857
4.B	2.144358	0.263743	0.000000
5.B	1.629202	-2.466445	0.000000
6.B	1.693222	-1.175176	0.942857
7.B	1.636646	0.309283	1.624381
8.B	1.651306	1.661301	0.788052
9.No	-0.726935	0.028401	0.000000

Species	An atomic electronic configuration	2S+1	PBE	PBE0
AcB ₈ -	s ²	1	0.00	0.00
	d^1s^1	3	5.15	6.98
	d ²	3	27.70	-
PaB ₈ -	$f^1 d^2 s^1$	5	0.00	0.00
	$f^2 d^1 s^1$	5	3.32	2.20 (4.11) ^a
	f^2s^2	3	7.64	4.73
BkB ₈ -	f^9s^1	7	0.00	0.00
	f^8s^2	7	2.53	4.19 (2.99) ^a
	$f^7 d^1 s^1$	9	26.46	24.13
MdB ₈ -	$f^{13}s^1$	3	0.00	0.00
	$f^{12}s^2$	3	40.41	46.78
	$f^{12}d^{1}s^{1}$	5	59.33	62.79
NoB ₈ -	$f^{14}s^1$	2	0.00	0.00
	$f^{14}d^1$	2	42.84	43.38
	$f^{13}d^{1}s^{1}$	4	119.57	133.13

Table S2. Relative energies of different electronic structures of AnB_8^- (An = Ac, Pa, Bk, Md, No) at PBE/TZP and PBE0/TZP levels.

^a The energies are obtained from CASSCF/NEVPT2/SO calculations.

Fig. S1. Natural orbital occupations of BkB_{8}^{-} obtained from a CASSCF (14e, 14o) calculation at the PBE0/TZP optimized geometry, with the consideration of SOC effect. The dominant contributions are indicated for each orbital. The CI coefficient for Bk (+I) (5f⁹7s¹) is 76%, with a 22% mixture of Bk (+I) (5f⁸7s²).

Fig. S2. Frontier orbital contours (isovalue = 0.03 a.u.) of AcB₈⁻ with trivalent Ac (+III) OS at PBE0/TZVP level.

Fig. S3. Frontier orbital contours (isovalue = 0.03 a.u.) of PaB_8^- with trivalent Pa (+III, f¹s¹) OS at PBE0/TZVP level.

Fig. S4. The results of PIO analysis on the $AnB_8^-(An = Ac, Pa, Bk, Md and No)$ at the PBE0/ECP60MWB/6-311G* level with An^+ and $B_8^2^-$ as two fragments. The contribution of first six dominant PIO (contrib%) and cumulative contribution (cum%) to the total interactions between two fragments are shown. The isovalue for each orbital is 0.02 a.u.

E	$Ac^{+}(7s^{2})$	$Pa^+(5f^16d^27s^1)$	$Bk^{+}(5f^{9}7s^{1})$	$Md^+(5f^{13}7s^1)$	$No^{+}(5f^{14}7s^{1})$
Fragments	$+ B_8^2 - (^1A')$	$+ B_8^2 - (^1A')$	$+ B_8^2 (A')$	$+ B_8^2 (^1A')$	$+ B_8^2 (A')$
ΔE_{int}	-275.51	-305.91	-245.72	-297.66	-239.10
ΔE_{pauli}	176.76	318.70	143.24	107.89	102.40
$\Delta E_{elstat}^{[a]}$	-309.79 (69.33%)	-395.86 (63.38%)	-288.79 (74.24%)	-266.24 (65.65%)	-262.44 (76.85%)
$\Delta E_{orb}^{[a]}$	-138.47 (30.67%)	-228.75 (36.62%)	-100.18 (25.76%)	-139.30 (34.35%)	-79.05 (23.15%)
$\Delta E_{orb(1)}^{[b]}$	-44.11 (31.86%)	-46.66 (20.40%)	-23.90 (23.86%)	13.42 (-9.63%)	-26.39 (33.38%)
$\Delta E_{orb(2)}^{[b]}$	-31.97 (23.09%)	-42.24 (18.47%)	-14.28 (14.25%)	-17.35 (12.46%)	-16.38 (20.72%)
$\Delta E_{orb(3)}^{[b]}$	-31.93 (23.06%)	-30.12 (13.17%)	-21.84 (21.81%)	-28.95 (20.79%)	-15.83 (20.02%)
$\Delta E_{orb(4)}^{[b]}$	-9.67 (6.98%)	-35.60 (15.56%)	-15.38 (15.35%)	-16.82 (12.07%)	-7.29 (9.22%)
$\Delta E_{orb(5)}^{[b]}$	-4.09 (2.95%)	-29.13 (12.74%)	-8.70 (8.68%)	-14.11 (10.13%)	-2.49 (3.15%)
$\Delta E_{orb(6)}^{[b]}$	-4.09 (2.95%)	-20.50 (8.96%)	-4.18 (4.17%)	-17.79 (12.77%)	-2.49 (3.15%)
$\Delta E_{orb(7)}^{[b]}$	-2.96 (2.14%)	-8.70 (3.81%)	-2.21 (2.20%)	-17.51 (12.57%)	/
$\Delta E_{orb(8)}^{[b]}$	-2.59 (1.87%)	-3.71 (1.62%)	-2.13 (2.13%)	-13.82 (9.92%)	/
$\Delta E_{orb(9)}^{[b]}$	-2.59 (1.87%)	-2.84 (1.24%)	-2.36 (2.36%)	-13.64 (9.79%)	/
$\Delta E_{rest}^{[b]}$	-4.47 (3.23%)	-9.24 (4.04%)	-5.19 (5.18%)	-12.72 (9.13%)	-8.19 (10.36%)

Table S3. The EDA-NOCV results for the AnB₈⁻ (An = Ac, Pa, Bk, Md and No) at the PBE0/TZP level. The scalar relativistic (SR) effects were taken into account according to the zero-order regular approximation (ZORA). (Energy values are given in kcal/mol, $\Delta E_{int} = \Delta E_{Pauli} + \Delta E_{elstat} + \Delta E_{orb}$).

[a] The values in parentheses provide the percentage contribution to the total attractive interactions $\Delta E_{elstat} + \Delta E_{orb}$. [b] The values within the parentheses show the contribution to the total orbital interaction.

Table S4. The deformation densities ($\Delta\rho$, isosurface=0.0005) of the dominant pairwise orbital interactions of EDA-NOCV analysis (charge density flow from red to blue) of AnB₈⁻ at the PBE0/TZP level. The energies in kcal/mol.

		S	d/d	-р б	d-p	ο π	d-p σ
AcB ₈ -		-44.11			-31.97	-31.93	-9.67
D.D	α	-30.46	-28.33	-35.55	-24.84	-16.04	-11.17
PaB ₈	β				-23.46	-19.87	-10.83
	α	-22.07			-12.00	-11.84	-6.06
BKB ⁸	β				-4.17	-7.47	-5.99
	α	19.13			-8.97	-8.80	-4.68
MdB ₈	β				32.55	-8.38	-20.15
NoD -	α	-18.44			-8.46	-8.44	-4.45
11088	β				-7.94	-7.92	-7.39

Fig. S5. AdNDP delocalized bonding analyses of AnB_8^- (An = Ac, Pa, Bk, Md, No) at PBE0/VTZ level.

Table S5. The NICS indices of AnB_8 –(An=Ac, Pa, Bk, Md and No) calculated at the PBE0/ECP60MWB/6-311G* level, at the center B of B_8 ring.

	NICS (0)	NICS (1)
AcB_8^-	-57.24	-0.56
PaB ₈ -	-54.75	-14.23
BkB ₈ -	-102.44	-33.41
MdB ₈ ⁻	-82.38	-23.10
NoB ₈ -	-83.89	-22.97

	Peripheral B-B	Radial B-B
AcB ₈ -	1.553 ± 0.009	1.820 ± 0.014
PaB ₈ -	1.555 ± 0.004	1.850 ± 0.039
BkB ₈ -	1.551 ± 0.001	1.806 ± 0.001
MdB_8	1.552 ± 0.003	1.805 ± 0.001
NoB ₈ -	1.552 ± 0.000	1.805 ± 0.000

Table S6. Different B-B distances in AnB₈⁻(An=Ac, Pa, Bk, Md and No) at PBE0/TZP level.