Supporting Information

Structure and Dynamics of the Proton-Selective Histidine and the Gating Tryptophan in an Inward Rectifying Hybrid Influenza B and A Virus M2 Proton Channel

Yanina Pankratova¹, Matthew J. McKay¹, Chunlong Ma², Haozhou Tan³, Jun Wang³, and Mei Hong^{1*}

¹ Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139

² Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721, United States

³ Department of Medicinal Chemistry, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ 08854

Figure S1. 1D ¹³C direct polarization spectra of GDR-BM2 (1-33) in VM+ membranes at pH 5.5 (a) and pH 7.5 (b). These spectra were measured under 10 kHz MAS at 305 K on a 400 MHz NMR. Assignments are shown in blue for POPC and POPE peaks, red for sphingomyelin (SM) peaks and green for cholesterol (ch) peaks. These lipid chemical shifts are standard, thus ruling out hydrolysis in these membranes. "*ssb*" denotes spinning sidebands. Shaded areas denote overlapped peptide and lipid ¹³C signals.

Figure S2. Histidine imidazole region of the ¹³C CP **spectra of membrane-bound GDR-BM2 and other M2 peptides**. Dashed lines guide the eye for the chemical shifts of different tautomeric and charged histidines. (a) ¹³C spectra of GDR-BM2 at pH 7.5 from 255 K to 308 K (probe set temperatures). No cationic H19 Cδ2 intensities are observed (gray band). The spectrum of the peptide-free VM+ membrane is shown at the bottom to indicate the natural abundance lipid ¹³C chemical shifts. (b) ¹³C spectra of GDR-BM2 at pH 5.5 from 255 K to 308 K. Cationic Cδ2 intensities (green band) are observed at low temperature and broaden at high temperature. (c) Comparison of the low-temperature ¹³C spectra of membrane-bound GDR-BM2 with previously measured WT-BM2 ¹ and H27A-BM2 ² spectra at pH 5.5. Cationic Cδ2 intensities are observed in GDR-BM2 but not in WT-BM2 and only weakly in H27A-BM2.

Figure S3. ¹⁹F CP and DP spectra of GDR-BM2 at pH 5.5, measured at 308 K under 7 kHz MAS. The DP spectrum (black) was measured with a 5 s recycle delay whereas the CP spectrum (red) was measured with a ¹H-¹⁹F CP contact time of 350 μ s. The two spectra overlap well, indicating that the intensity ratios obtained from the CP spectra reflect the relative abundance of the different Trp species in the peptide. Due to different numbers of scans, the DP spectrum was scaled 14.68 times to match the -123.8 ppm intensity (indicated with an asterisk) in the CP spectrum.

Experiment	NMR parameters					
	GDR-BM2 (1-33), pH 7.5, VM ⁺					
1D ¹³ C DP	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS } 10 \text{ kHz};$	17 h				
Figure S1	$T_{set} = 305 \text{ K}$, water ¹ H 4.71 ppm, $T_{sample} = +29^{\circ}C$, ns = 12k, d1 = 5s					
	¹³ C excitation 52.6 kHz, ¹ H TPPM decoupling 68 kHz					
1D ¹³ C CP	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS } 10 \text{ kHz};$					
Figure S2a	¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 78 kHz; $\tau_{HC CP} = 1$ ms; 1H					
	CP 55.45 kHz, ¹³ C CP 45.45 kHz, ramp on ¹³ C 70-100%;					
	$T_{set} = 255 \text{ K}$: water ¹ H 5.26 ppm, $T_{sample} = -24^{\circ}\text{C}$, ns=4k, d1=1.7 s	1.9 h				
	$T_{set} = 275 \text{ K}$: water ¹ H 5.04 ppm, $T_{sample} = -2.6^{\circ}\text{C}$, ns=6.25k, d1=1.7 s	3.0 h				
	$T_{set} = 295 \text{ K}$: water ¹ H 4.79 ppm, $T_{sample} = +22^{\circ}C$, ns=5k, d1=2 s	2.8 h				
	$T_{set} = 310 \text{ K}$: water ¹ H 4.65 ppm, $T_{sample} = +35^{\circ}C$, ns=20k, d1=2 s	11.4 h				
1D ¹⁵ N CP	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS } 10 \text{ kHz};$					
Figure 2b, 3a	¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{\text{HN CP}} = 2 \text{ ms}$ ¹ H					
	CP 41 kHz, ¹⁵ N CP 33.3 kHz, ramp on ¹⁵ N 80-100%;					
	$T_{set} = 255 \text{ K}$: water ¹ H 5.26 ppm, $T_{sample} = -24^{\circ}C$, ns=40k, d1=1.7 s	19.3 h				
	$T_{set} = 275 \text{ K}$: water ¹ H 5.04 ppm, $T_{sample} = -2.6^{\circ}C$, ns=61k, d1=1.7 s	29.5 h				
	$T_{set} = 295 \text{ K}$: water ¹ H 4.79 ppm, $T_{sample} = +22^{\circ}C$, ns=67k, d1=2 s	38.1 h				
	$T_{set} = 305 \text{ K}$: water ¹ H 4.64 ppm, $T_{sample} = +36^{\circ}C$, ns=80k, d1=2 s	45.5 h				
$2D^{13}C^{-13}C$	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS } 10 \text{ kHz};$					
CORD	$T_{set} = 255 \text{ K}$: water ¹ H 5.26 ppm, $T_{sample} = -24^{\circ}C$, ¹ H excitation 71.43 kHz,					
Figure 4a, 4c	¹ H TPPM decoupling 78 kHz; $\tau_{HC CP} = 1$ ms; ¹ H CP 55.45 kHz, ¹³ C CP	32.6 h				
	45.45 kHz, ramp on ¹³ C 70-100%; $\tau_{CORD} = 72.0$ ms, $t_1 = 3$ ms (TD2 = 120),					
• 1 57 x 12 c	$t_2 = 18 \text{ ms}, \text{ ns} = 576, d1 = 1.7 \text{ s}$					
$2D^{13}N^{-13}C$	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS } 10 \text{ kHz};$					
TEDOR	$T_{set} = 255 \text{ K}$: water 'H 5.26 ppm, $T_{sample} = -24^{\circ}\text{C}$, 'H excitation /1.43 kHz,					
Figure 4d	¹ H TPPM decoupling /8 kHz; $\tau_{HC CP} = 1$ ms; TH CP 55.45 kHz, ¹³ C CP	38.4 h				
	45.45 kHz, ramp on $^{-1}$ C /0-100%; $^{-1}$ N recoupling (2) 35.7 kHz					
	$T_{REDOR} = 1.0 \text{ ms}, t_1 = 2.5 \text{ ms} (1D2 = 50) \text{ of } t_1 = 5 \text{ ms} (1D2 = 100), t_2 = 18$ ms ns=1152 d1=1.8 s					
$2D^{13}C^{-1}H$	$B_0 = 400 \text{ MHz} (9.4 \text{ T}) \text{ MAS } 10 \text{ kHz}$					
doubled	$T_{i} = 305 \text{ K} \cdot \text{water}^{1} H 4.64 \text{ nnm } T_{i} = +36^{\circ} \text{C} \text{ ns} = 8k \text{ d} 1 = 2 \text{ s}^{\circ}$					
DIPSHIFT	¹ H excitation 71 43 kHz ¹ H TPPM decoupling 78 kHz: $\tau_{HCCP} = 1 \text{ ms} \cdot {}^{1}\text{H}$	41 0 h				
Figure 6a, 6b	CP 55.45 kHz. ¹³ $C CP 45.45 kHz$, ramp on ¹³ $C 70-100%$; FSLG decoupling	11.0 11				
1 18	71.43 kHz, 13 C π -pulse 45.45 kHz; 9 points					
1D ¹⁹ F CP	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS 7 kHz};$					
Figure 7a	$T_{set} = 305 \text{ K}$: water ¹ H 4.73 ppm, $T_{sample} = +27^{\circ}C$, ns=30k, d1=2 s; ¹ H					
C	excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{HF CP} = 0.3$ ms; ¹ H	17.1 h				
	CP 50 kHz, ¹⁹ F CP 50 kHz, ramp on ¹⁹ F 80-100%					
	GDR-BM2 (1-33), pH 5.5, VM ⁺					

 Table S1. Detailed parameters for the solid-state NMR experiments.

1D ¹³ C DP	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS } 10 \text{ kHz};$	14.25				
Figure S1	$T_{set} = 305 \text{ K}$, water ¹ H 4.71 ppm, $T_{sample} = +29 ^{\circ}\text{C}$, ns = 10k, d1 = 5s					
	¹³ C excitation 55.6 kHz, ¹ H TPPM decoupling 68 kHz					
1D ¹³ C CP	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS } 10 \text{ kHz};$					
Figure S2b	¹ H excitation 71.43 kHz, ¹ H decoupling 78 kHz; $\tau_{HC CP} = 1$ ms; ¹ H CP 55.45					
-	kHz, ¹³ C CP 45.45 kHz, ramp on ¹³ C 70-100%;					
	$T_{set} = 255 \text{ K}$: water ¹ H 5.21 ppm, $T_{sample} = -19^{\circ}C$, ns=4k, d1=1.7 s	1.9 h				
	$T_{set} = 275 \text{ K}$: water ¹ H 5.01 ppm, $T_{sample} = 0^{\circ}C$, ns=2k, d1=1.7 s	1.0 h				
	$T_{set} = 295 \text{ K}$: water ¹ H 4.77 ppm, $T_{sample} = +24^{\circ}C$, ns=2k, d1=2 s	1.1 h				
	$T_{set} = 308 \text{ K}$: water ¹ H 4.65 ppm, $T_{sample} = +35^{\circ}C$, ns=15k, d1=2 s	8.5 h				
1D ¹⁵ N CP	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS } 10 \text{ kHz};$					
Figure 2c, 3a	¹ H excitation 71.43 kHz, ¹ H decoupling 71.43 kHz; $\tau_{\text{HN CP}} = 2 \text{ ms}$, ¹ H CP 41					
	kHz, ¹⁵ N CP 33.3 kHz, ramp on ¹⁵ N 80-100%;					
	$T_{set} = 255 \text{ K}$: water ¹ H 5.21 ppm, $T_{sample} = -19^{\circ}\text{C}$; ns=81k, d1=1.7 s	39.2 h				
	$T_{set} = 275 \text{ K}$: water ¹ H 5.02 ppm, $T_{sample} = -1^{\circ}C$; ns=116k, d1=1.7 s	56.1 h				
	$T_{set} = 295 \text{ K}$: water ¹ H 4.76 ppm, $T_{sample} = -24^{\circ}\text{C}$; ns=54k, d1=2 s	30.7 h				
	$T_{set} = 305 \text{ K}$: water ¹ H 4.66 ppm, $T_{sample} = +34^{\circ}\text{C}$; ns=122k, d1=2 s	69.4 h				
$2D^{13}C^{13}C$	$P_{0} = 400 \text{ MHz} (0.4 \text{ T}) \text{ MAS } 10 \text{ kHz}$					
2D C- C	$\mathbf{T}_{i} = 255 \text{ K} \cdot \text{water}^{1}\text{H} 5.21 \text{ ppm} \text{ T}_{i} = -10^{0}\text{ C}^{-1}\text{H} \text{ excitation } 71.43 \text{ kHz}$					
Figure 4b 4c	¹ H TPPM decoupling 78 kHz: $\tau_{UCCP} = 1$ ms: 1H CP 55 45 kHz ¹³ C CP	34 5 h				
1 igure 40, 40	45 45 kHz ramp on ¹³ C 70-100%: $\tau_{COPD} = 72.0$ ms t ₁ = 3 ms (TD2 = 120)	54.5 11				
	$t_2 = 18 \text{ ms}, \text{ns}=608, \text{d}1=1.7 \text{ s}$					
$2D^{15}N^{-13}C$	$B_0 = 400 \text{ MHz} (9.4 \text{ T}). \text{ MAS } 10 \text{ kHz}:$					
TEDOR	$T_{set} = 255 \text{ K}$: water ¹ H 5.21 ppm. $T_{sample} = -19^{\circ}\text{C}$. ¹ H excitation 71.43 kHz.					
Figure 4d	¹ H TPPM decoupling 78 kHz; $\tau_{HC CP} = 1$ ms; 1H CP 55.45 kHz, ¹³ C CP	40.8 h				
0	45.45 kHz, ramp on ¹³ C 70-100%; ¹⁵ N recoupling @ 35.7 kHz					
	$T_{REDOR} = 1.6 \text{ ms}, t_1 = 2.5 \text{ ms} (TD2 = 50), t_2 = 18 \text{ ms}, ns=1632, d1=1.8 \text{ s}$					
2D ¹³ C- ¹ H	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS } 10 \text{ kHz};$					
doubled	$T_{set} = 305 \text{ K}$: water ¹ H 4.66 ppm, $T_{sample} = +34^{\circ}\text{C}$, ns=4k, d1=2 s;					
DIPSHIFT	¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 78 kHz; $\tau_{HC CP} = 1$ ms; 1H	20.5 h				
Figure 6a, 6c	CP 55.45 kHz, ¹³ C CP 45.45 kHz, ramp on ¹³ C 70-100%; FSLG decoupling					
	71.43 kHz, ${}^{13}C$ π -pulse 45.45 kHz; 9 points					
1D ¹⁹ F CP	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS 7 kHz};$					
Figure 7a, 7e,	$T_{set} = 308$ K: water ¹ H 4.71 ppm, $T_{sample} = +29^{\circ}C$, ns=15k, d1=2 s;	85h				
S2	¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{\text{HF CP}} = 0.3$ ms;	0.5 11				
	1H CP 50 kHz, ¹⁹ F CP 50 kHz, ramp on ¹⁹ F 80-100%					
1D ¹⁹ F DP	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS 7 kHz};$					
Figure S3	$T_{set} = 308 \text{ K}$: water ¹ H 4.71 ppm, $T_{sample} = +29^{\circ}C$, ns=1k, d1=5 s;	1.4 h				
	¹ H TPPM decoupling 71.43 kHz; ¹⁹ F excitation 50 kHz					
	WT-BM2 (1-33), pH 7.5, VM ⁺					
1D ¹⁹ F CP	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS 7 kHz};$					
Figure 7b	T _{set} = 308 K: water ¹ H 4.71 ppm, $T_{sample} = +30$ ⁰ C, ns=165 k, d1=2 s;	02 0 1				
	¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 62.5 kHz; $\tau_{\text{HF CP}} = 0.5$ ms;	93.8 N				
	1H CP 34.5 kHz, ¹⁹ F CP 52 kHz, ramp on ¹⁹ F 80-100%					

	WT-BM2 (1-33), pH 5.5, VM ⁺				
2D ¹³ C- ¹ H	B ₀ = 600 MHz (14.1 T), MAS 10.5 kHz;				
doubled	$T_{set} = 305 \text{ K}$: water ¹ H 4.73 ppm, $T_{sample} = +27 \ ^{0}C$, ns= 12.5 k, d1=2 s;				
DIPSHIFT	¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{HC CP} = 1$ ms;	64 h			
Figure 6a, 6d	1H CP 61.7 kHz, ¹³ C CP 61.1 kHz, ramp on ¹³ C 70-100%; FSLG				
	decoupling 71.43 kHz, ¹³ C π -pulse 62.5 kHz; 9 points				
1D ¹⁹ F CP	$B_0 = 600 \text{ MHz} (14.1 \text{ T}), \text{MAS } 10.5 \text{ kHz};$				
Figure 7b, 7f	$T_{set} = 305 \text{ K}$: water ¹ H 4.73 ppm, $T_{sample} = +27 ^{\circ}C$, ns=25k, d1=2 s;	14.2 h			
	¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{\text{HF CP}} = 0.3$ ms;	14.2 h			
	1H CP 65.4 kHz, ¹⁹ F CP 71.43 kHz, ramp on ¹⁹ F 70-100%				
	H27A-BM2 (1-33), pH 6.5, VM ⁺				
1D ¹⁹ F CP	$B_0 = 400 \text{ MHz} (9.4 \text{ T}), \text{ MAS 7 kHz};$				
Figure 7c	$I_{set} = 308 \text{ K}$: water 'H 4./4 ppm, $I_{sample} = +26 \text{ °C}$, ns=20 k, d1=2 s;	11 / h			
Figure 7c	$I_{set} = 308$ K: water 'H 4. /4 ppm, $I_{sample} = +26$ °C, ns=20 k, d1=2 s; ¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{HF CP} = 0.35$	11.4 h			
Figure 7c	$\Gamma_{set} = 308$ K: water 'H 4.74 ppm, $\Gamma_{sample} = +26$ °C, ns=20 k, d1=2 s; ¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{HF CP} = 0.35$ ms; 1H CP 34 kHz, ¹⁹ F CP 50 kHz, ramp on ¹⁹ F 90-100%	11.4 h			
Figure 7c	I _{set} = 308 K: water 'H 4.74 ppm, I _{sample} = +26 °C, ns=20 k, d1=2 s; ¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{HF CP} = 0.35$ ms; 1H CP 34 kHz, ¹⁹ F CP 50 kHz, ramp on ¹⁹ F 90-100%	11.4 h			
Figure 7c	I _{set} = 308 K: water 'H 4.74 ppm, I _{sample} = +26 °C, ns=20 k, dI=2 s; ¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{HF CP} = 0.35$ ms; 1H CP 34 kHz, ¹⁹ F CP 50 kHz, ramp on ¹⁹ F 90-100% H27A-BM2 (1-33), pH 5.5, VM ⁺	11.4 h			
Figure 7c	I _{set} = 308 K: water 'H 4. /4 ppm, I _{sample} = +26 °C, ns=20 k, d1=2 s; ¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{HF CP} = 0.35$ ms; 1H CP 34 kHz, ¹⁹ F CP 50 kHz, ramp on ¹⁹ F 90-100% H27A-BM2 (1-33), pH 5.5, VM ⁺ B ₀ = 600 MHz (14.1 T), MAS 10.5 kHz;	11.4 h			
Figure 7c 1D ¹⁹ F CP Figure 7g	$\mathbf{I}_{set} = 308 \text{ K: water 'H 4.74 ppm, } \mathbf{I}_{sample} = +26 \text{ °C, } ns=20 \text{ k, } d1=2 \text{ s;}$ ¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{HF CP} = 0.35$ ms; 1H CP 34 kHz, ¹⁹ F CP 50 kHz, ramp on ¹⁹ F 90-100% H27A-BM2 (1-33), pH 5.5, VM ⁺ B ₀ = 600 MHz (14.1 T), MAS 10.5 kHz; $\mathbf{T}_{set} = 305 \text{ K: water }^{1}\text{H 4.72 ppm, } \mathbf{T}_{sample} = +28 ^{0}\text{C, } ns=15\text{ k, } d1=2 \text{ s;}$	11.4 h			
1D ¹⁹ F CP Figure 7g	$\mathbf{I}_{set} = 308 \text{ K: water 'H 4.74 ppm, } \mathbf{I}_{sample} = +26 \text{ °C, } ns=20 \text{ k, } d1=2 \text{ s;}$ ¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{HF CP} = 0.35$ ms; 1H CP 34 kHz, ¹⁹ F CP 50 kHz, ramp on ¹⁹ F 90-100% H27A-BM2 (1-33), pH 5.5, VM ⁺ $\mathbf{B}_0 = 600 \text{ MHz (14.1 T), MAS 10.5 kHz;}$ $\mathbf{T}_{set} = 305 \text{ K: water } ^{1}\text{H 4.72 ppm, } \mathbf{T}_{sample} = +28 \ ^{0}\text{C, ns} = 15 \text{ k, } d1=2 \text{ s;}$ ¹ H excitation 71.43 kHz, ¹ H TPPM decoupling 71.43 kHz; $\tau_{HF CP} = 0.5 \text{ ms;}$	11.4 h			

Residue	pН	Ν	С	Са	Сβ	Cγ1	Сү2	C δ1	Сү	Сб2	Ce1	Νδ1	Νε2
S9	7.5	117.7	-	59.8	-	-	-	-	-	-	-	-	-
	5.5	116.6	-	59.4	61.6	-	-	-	-	-	-	-	-
105	7.5	122	-	63.2	36.3	28.0	15.5	12.5	-	-	-	-	-
125	5.5	121.3	-	63.6	36.1	28.0	15.4	12.5	-	-	-	-	-
105 *	7.5			59.3	34.8	27.7	16.0	11.7					
125 *	5.5			59.8	35.4	26.0	15.8						
Η19 τ		120.2	175.1	55.0	28.6	-	-	-	137.4	114.0	134.7	250.8	163.4
Η19 π	7.5	120.2	174.8	54.8	28.8	-	-	-	-	125.8	134.9	168.9	250.4
H19 +		-	-	-	-	-	-	-	-	-	-	-	-
Η19 τ		118.7	175.5	54.7	29.0	-	-	-	136.5	113.3	134.0	250.5	159.6
Η19 π	55	118.7	175.2	54.6	29.1	-	-	-	-	125.1	134.0	167.3	250.3
H19 +	5.5	-	174.3	54.38	28.2	-	-	-	-	116.5	134.2	182.1	167.9
1117					8								
H19 *	5.5	-	-	54.4	25.1	-	-	-	136.2	-	-	-	-

Table S2. ¹³C and ¹⁵N chemical shifts of membrane-bound GDR-BM2 at pH 7.5 and pH 5.5. Minor conformations (indicated by an asterisk) are observed for I25 and H19.

Table S3. Percent populations of τ tautomer, π tautomer, and cationic histidine for the protonselective H19 in BM2 and the proton-selective H37 in S31N-AM2 at different pH. All data were obtained from VM+ membrane-bound M2 peptides, except for the pH 7.5 WT-BM2 data, which was measured in the POPC/POPG/cholesterol membrane ³. The uncertainty in the percent populations is conservatively estimated to be ±5% based on differences between the 2D CC and NC results for GDR-BM2, and mainly reflects systematic uncertainty due to residual motion and different polarization transfer dynamics for different ¹³C and ¹⁵N sites.

			Percent populations of histidine species				
Peptides pH		Experiment	τ tautomer	π tautomer	[τ]:[π]	Cationic	
						His	
GDR-BM2 (1-33)	7.5	2D CC (72 ms CORD)	73%	27%		0%	
		2D NC	68%	32%		0%	
		Average	70%	30%	2.3	0%	
GDR-BM2 (1-33)	5.5	2D CC (72 ms CORD)	59%	22%		19%	
		2D NC	55%	18%		26%	
		Average	57%	20%	2.9	23%	
WT-BM2 (1-33) ¹	7.5	2D CC (50 ms PDSD)	71%	30%	2.4	0%	
	5.5	2D CC (100 ms PDSD)	62%	38%	1.7	0%	
H27A-BM2	7.5	2D CC (70 ms PDSD)	41%	59%	0.7	0%	
	5.5	2D CC (70 ms PDSD)	37%	41%	0.8	26±10%	
S31N-AM2 (19-49)	7.5	1D ¹³ C spectra	65%	25%	2.6	10%	
1	5.4	1D ¹³ C spectra	36%	12%	3.0	52%	
WT-AM2 (22-46) ⁴	8.5	2D CC	71%	29%	2.4	0%	
	4.5	2D CC	0%	0%	n/a	100%	
W41F-AM2 (22-46)	7.5	2D CC (150 ms PDSD)	46%	54%	0.8	0%	
5	5.5	2D CC (150 ms PDSD)	0	0	n/a	100%	

Table S4. Fractional intensities of the resolved ¹⁹F peaks at acidic pH for three influenza M2 peptides obtained from spectral simulations. 5^{-19} F-Trp is labeled in all three peptides. The GDR-BM2 and WT-BM2 spectra were measured at pH 5.5 at 305 K whereas the AM2 spectrum was previously measured at pH 4.5 at 243 K⁻¹.

States	¹⁹ F chemical shift range	GDR-BM2	WT-BM2	WT-AM2
State A	-124.0 to -123.8 ppm	57%	44%	28%
State B	-125.3 to -125.6 ppm	22%	14%	28%
State C	-126.8 to -127.2 ppm	21%	27%	44%
State D	122.7 ppm	0	15%	0

References

- 1. J. K. Williams, Y. Zhang, K. Schmidt-Rohr and M. Hong, *Biophys. J.*, 2013, **104**, 1698-1708.
- B. Kwon, M. Roos, V. S. Mandala, A. A. Shcherbakov and M. Hong, *J. Mol. Biol.*, 2019, 431, 2554-2566.
- 3. J. K. Williams, D. Tietze, M. Lee, J. Wang and M. Hong, J. Am. Chem. Soc., 2016, **138**, 8143-8155.
- 4. F. Hu, W. Luo and M. Hong, *Science*, 2010, **330**, 505-508.
- 5. V. S. Mandala, S. Y. Liao, B. Kwon and M. Hong, J. Mol. Biol., 2017, 429, 2192-2210.