Electronic Supplementary Information (ESI)

Assessing Hydrophobic Deep Eutectic Solvents for

Intramolecular Excimer Formation

Shreya Juneja and Siddharth Pandey*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi – 110016, India.

*To whom correspondence should be addressed.

E-mail: sipandey@chemistry.iitd.ac.in, Phone: +91-11-26596503, Fax: +91-11-26581102

Table of Contents

	Page No.
Table S1	S3
Table S2	S11
Figure S1	S15
Figure S2	S16
Figure S3	S17
Figure S4	S18
Figure S5	S19
Figure S6	S20
Figure S7	S21
Figure S8	S22
Figure S9	S23
Figure S10	S24

Temperature (K)	re (K) λ_{em} (nm) τ_1 (ns) (α_1)		$\tau_2(ns)(\alpha_2)$	χ^2				
Men : DA (2 : 1)								
293.15	377	45.1		0.92				
	480	42.1 (-0.50)	42.2 (0.50)	2.24				
303.15	377	32.5		0.87				
	480	33.0 (-0.50)	33.1 (0.50)	2.11				
313.15	377	24.5		0.89				
	480	26.5 (-0.50)	26.5 (0.50)	1.96				
323.15	377	19.3		1.09				
	480	21.8 (-0.50)	21.8 (0.50)	1.63				
333.15	377	31.6		14.31				
		13.4 (0.73)	23.1 (0.27)	0.91				
	480	13.4 (-0.48)	23.1 (0.52)	1.62				
343.15	377	26.9		10.34				
		9.80 (0.64)	21.0 (0.36)	0.89				
	480	9.80 (-0.47)	21.0 (0.53)	1.54				
353.15	377	22.9		7.33				
		7.23 (0.56)	19.2 (0.44)	0.98				
	480	7.23 (-0.45)	19.2 (0.55)	1.99				
363.15	377	20.0		5.38				
		5.27 (0.50)	17.7 (0.50)	0.98				
	480	5.27 (-0.43)	17.7 (0.57)	1.67				
	Ν	Men : DA (1 : 1)						
293.15	377	41.7		0.97				
	480	39.7 (-0.50)	39.8 (0.50)	1.94				
303.15	377	30.8		0.90				

Table S1 Recovered Excited-State Intensity Decay Parameters for $1-Py(CH_2)_{10}COO(CH_2)_61-Py$ (10 µM; Excitation with 340 nm NanoLED) Dissolved in the Investigated DESs at Different Temperatures. For T > 323.15 K, the Parameters are Obtained *via* Global Fitting Strategy. Errors Associated with Decay Times are $\le \pm 2\%$.

	480	31.7 (-0.50)	31.7 (0.50)	1.68
313.15	377	23.6		1.06
	480	25.5 (-0.50)	25.5 (0.50)	1.57
323.15	377	18.8		1.11
	480	20.9 (-0.50)	20.9 (0.50)	1.41
333.15	377	30.6		18.09
		12.1 (0.70)	22.5 (0.30)	1.02
	480	12.1 (-0.48)	22.5 (0.52)	1.44
343.15	377	25.7		14.35
		9.05 (0.65)	20.2 (0.35)	0.98
	480	9.05 (-0.47)	20.2 (0.53)	1.43
353.15	377	22.2		10.73
		6.45 (0.59)	18.5 (0.41)	1.00
	480	6.45 (-0.47)	18.5 (0.53)	1.37
363.15	377	18.8		6.91
		4.83 (0.50)	16.6 (0.50)	0.88
	480	4.83 (-0.45)	16.6 (0.55)	1.26
		Men : DA (1 : 2)		
293.15	377	39.6		0.96
	480	38.4 (-0.50)	38.4 (0.50)	1.59
303.15	377	29.7		0.97
	480	30.9 (-0.50)	30.9 (0.50)	1.47
313.15	377	23.2		1.07
	480	25.3 (-0.50)	25.3 (0.50)	1.27
323.15	377	19.1		1.17
	480	21.0 (-0.50)	21.0 (0.50)	1.26
333.15	377	29.9		15.83
	_ , ,	12.6 (0.67)	21.8 (0.33)	1.05
	480	12.6 (-0.49)	21.8 (0.51)	1.59
343.15	377	25.8		11.92

		Thy : DA (1 : 1)		
	480	4.92 (-0.47)	17.5 (0.53)	1.43
303.13	311	4.92 (0.54)	17.5 (0.46)	0.93
262 15	277	20.2		7.02
	480	6.63 (-0.48)	18.6 (0.52)	1.53
		6.63 (0.62)	18.6 (0.38)	0.91
353.15	377	22.5		10.72
			()	
	480	9.09 (-0.48)	20.2 (0.51)	1.38
545.15	511	23.9 9 09 (0 69)	20.2 (0.31)	0.89
343 15	377	25.0		12.80
	480	12.0 (-0.49)	22.0 (0.51)	1.41
		12.0 (0.75)	22.0 (0.25)	0.86
333.15	377	29.6		16.93
	480	20.4 (-0.50)	20.4 (0.50)	1.40
323.15	377	18.0		0.94
		- ()	()	
515.10	480	24.5 (-0.50)	24.5 (0.50)	1.35
313.15	377	22.3		0.89
	480	30.2 (-0.30)	30.9 (0.30)	1.19
303.15	377	29.6	20.0 (0.50)	0.92
202.15	277	20.4		0.02
	480	38.3 (-0.50)	38.8 (0.50)	1.13
293.15	377	40.3		0.93
		, · · · · · · · · · · · · · · · · · · ·		
		Thy : DA (2 : 1)		
	480	4.83 (-0.46)	16.6 (0.54)	1.71
	100	4.83 (0.48)	16.6 (0.52)	1.04
363.15	377	19.2		6.77
	480	6.58 (-0.47)	18.3 (0.53)	1.72
555.15	511	6.58 (0.55)	18.3 (0.45)	1.01
353.15	377	22.0		9.36
	480	9.08 (-0.48)	20.1 (0.52)	1.71
	400	9.08 (0.61)	20.1 (0.39)	1.01

293.15	377	39.5		1.01
	480	37.7 (-0.50)	37.9 (0.50)	1.53
303.15	377	29.4		0.95
	480	30.4 (-0.50)	30.4 (0.50)	1.49
313.15	377	22.8		0.93
	480	24.9 (0.50)	24.9 (-0.50)	1.53
323.15	377	18.5		1.21
	480	20.7 (-0.50)	20.7 (0.50)	1.54
333.15	377	30.2		21.93
		12.5 (0.72)	22.4 (0.28)	0.99
	480	12.5 (-0.49)	22.4 (0.51)	1.48
343.15	377	25.7		17.84
		9.17 (0.65)	20.2 (0.35)	1.13
	480	9.17 (-0.48)	20.2 (0.52)	2.05
353.15	377	22.1		11.96
		6.74 (0.58)	18.3 (0.42)	1.13
	480	6.74 (-0.47)	18.3 (0.53)	1.94
363.15	377	19.3		8.65
		4.98 (0.51)	16.7 (0.49)	1.00
	480	4.98 (-0.47)	16.7 (0.53)	1.82
		Thy : DA (1 : 2)		
293.15	377	37.8		0.88
	480	36.9 (-0.50)	36.9 (0.50)	1.31
303.15	377	28.6		0.85
	480	29.80 (-0.50)	29.85 (0.50)	1.29
313.15	377	22.3		0.85
	480	24.5 (0.50)	24.4 (-0.50)	1.38
323.15	377	18.3		1.16
	480	20.4 (-0.50)	20.4 (0.50)	1.34
333.15	377	30.1		18.35

		12.4 (0.71)	22.1 (0.29)	0.92
	480	12.4 (-0.49)	22.1 (0.51)	1.34
343 15	377	25.9		13 41
515.10	511	9.09(-0.48)	20.3 (0.52)	0.88
	480	9.09(-0.48)	20.3 (0.52)	1.50
	100	5.05 (0.10)	20.5 (0.52)	1.50
353.15	377	22.1		9.62
		6.76 (0.57)	18.3 (0.43)	0.84
	480	6.76 (-0.48)	18.3 (0.52)	1.57
363 15	377	18.9		6.82
505.15	511	4 96 (0 49)	16.4 (0.51)	0.02
	480	4.96(-0.47)	16.4(0.51)	1.57
	400	4.90 (0.47)	10.4 (0.55)	1.57
		Thy : Men (5 : 1)		
293.15	377	45.7		1.07
	480	42.1 (-0.50)	42.1 (0.50)	1.46
303.15	377	32.9		0.92
	480	33.0 (-0.50)	33.0 (0.50)	1.55
313.15	377	24.3		1.04
	480	26.4 (0.50)	26.3 (-0.50)	1.32
323.15	377	19.0		1.03
	480	21.6 (-0.50)	21.6 (0.50)	1.58
333 15	377	31 3		20.48
555115	577	13.6 (0.79)	22.6 (0.21)	0.83
	480	13.6 (-0.49)	22.6 (0.51)	1.20
		~ /	~ /	
343.15	377	26.2		18.71
		9.74 (0.70)	20.4 (0.30)	0.89
	480	9.74 (-0.48)	20.4 (0.52)	1.37
353 15	377	22.3		13 21
555.15	511	7.18 (0.65)	18.2 (0.35)	1.00
	480	7.18(-0.48)	18.2(0.52)	1.33
	100	,	10.2 (0.02)	1.55
363.15	377	19.2		9.66
		5.23 (0.57)	16.5 (0.43)	0.91
	480	5.23 (-0.47)	16.5 (0.53)	1.57

Thy : Men (2 : 1)							
293.15	377	53.0		0.87			
_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	480	46.9 (-0.50)	46.9 (0.50)	1.22			
202.15	255	25.0		0.02			
303.15	377	37.2	2(2(0,50)	0.93			
	480	36.3 (-0.50)	36.3 (0.50)	1.24			
313.15	377	27.4		0.82			
	480	28.7 (0.50)	28.7 (-0.50)	1.33			
323 15	377	21.0		0.81			
525.15	480	21.0 23 3 (-0 50)	23 4 (0 50)	1 43			
333.15	377	32.9		19.81			
		15.5 (0.82)	22.7 (0.18)	0.89			
	480	15.5 (-0.49)	22.7 (0.51)	1.20			
2 4 2 4 5		•••		1			
343.15	377	25.9	20.7(0.21)	15.82			
	490	10.8 (0.69)	20.7 (0.31)	0.84			
	480	10.8 (-0.48)	20.7 (0.32)	1.41			
353.15	377	23.2		12.41			
		7.82 (0.63)	18.7 (0.37)	0.85			
	480	7.82 (-0.48)	18.7 (0.52)	1.75			
363 15	377	20.0		8 72			
505.15	511	5.54 (0.56)	17.1 (0.44)	0.83			
	480	5.54 (-0.47)	17.1 (0.53)	1.58			
		Thy : Men (1 : 1)					
293.15	377	58.0		0.95			
	480	45.7 (-0.49)	54.3 (0.51)	1.48			
303 15	377	40.3		0 97			
505.15	480	383(-0.50)	38 3 (0 50)	1 30			
	100	20.2 (0.20)	50.5 (0.50)	1.50			
313.15	377	28.9		0.90			
	480	30.0 (0.50)	30.0 (-0.50)	1.43			
372 15	277	22.0		0.05			
543.13	480	24.0(-0.50)	24.1 (0.50)	1.22			
		= (0.000)	= (0.0 0)				

333 15	377	33 5		24 14
555.15	311	15 4 (0 79)	23.7(0.21)	1.03
	480	15.4(-0.49)	23.7(0.21) 23.7(0.51)	1.05
	400	13.4 (0.49)	23.7 (0.51)	1.4/
343.15	377	28.0		18.87
		10.6 (0.71)	21.6 (0.29)	0.92
	480	10.6 (-0.48)	21.6 (0.52)	1.39
252.15	277	22.6		14.00
555.15	3//	25.0	100(027)	14.09
	400	7.59 (0.63)	19.0 (0.37)	1.00
	480	7.59 (-0.48)	19.0 (0.52)	1.59
363.15	377	20.1		11.18
		5.41 (0.57)	17.3 (0.43)	1.09
	480	5.41 (-0.47)	17.3 (0.53)	1.27
		Thy : Men (1 : 2)		
293.15	377	60.1		0.91
	480	43.5 (-0.48)	58.3 (0.52)	1.25
		· · · · ·	· · · · ·	
303.15	377	40.7		0.79
	480	38.7 (-0.50)	38.7 (0.50)	1.17
			× /	
313.15	377	28.9		0.98
	480	30.1 (0.50)	29.3 (-0.50)	1.48
323.15	377	21.6		0.86
	480	23.6 (-0.50)	23.6 (0.50)	1.68
333.15	377	33.5		22.00
		15.5 (0.79)	22.8 (0.21)	0.83
	480	15.5 (-0.49)	22.8 (0.51)	1.23
343 15	377	27.4		15 56
0.0.10	211	10 5 (0 68)	20.8 (0.32)	0 79
	480	10.5(-0.48)	20.8 (0.52)	1.26
	700	10.5 (0.70)	20.0 (0.32)	1.20
353.15	377	23.1		11.38
		7.49 (0.61)	18.8 (0.39)	0.95
	480	7.49 (-0.48)	18.8 (0.52)	1.77

363.15	377	20.0		9.04				
		5.41 (0.55)	17.0 (0.45)	0.87				
	480	5.41 (-0.47)	17.0 (0.53)	1.53				
Thy : Men (1 : 5)								
293.15	377	61.3		0.86				
	480	37.8 (-0.47)	63.8 (0.53)	1.16				
303.15	377	40.7		0.83				
	480	38.2 (-0.50)	38.3 (0.50)	1.06				
313.15	377	28.2		0.89				
	480	29.1 (-0.50)	29.2 (0.50)	1.12				
323.15	377	20.8		0.96				
	480	22.8 (-0.50)	23.1 (0.50)	1.09				
333.15	377	32 3		18 94				
555.15	511	13.6(0.74)	23.7 (0.26)	0.89				
	480	13.6 (-0.49)	23.7 (0.51)	1.56				
343.15	377	27.1		15.47				
		9.45 (0.69)	21.5 (0.32)	0.90				
	480	9.45 (-0.48)	21.5 (0.52)	1.67				
353.15	377	22.9		10.76				
		6.84 (0.63)	19.0 (0.37)	0.83				
	480	6.84 (-0.48)	19.0 (0.52)	1.61				
363.15	377	19.5		8.19				
		4.70 (0.57)	17.1 (0.43)	0.87				
	480	4.70 (-0.47)	17.1 (0.53)	1.47				

T/K	η (mPa.s) ^a	k _a	k _d	k _E	<i>k</i> _M	$K_{eq,a}^* = k_a/k_d$		
	- ` ´		(106,	s ⁻¹)				
	Men : DA (2:1)							
293.15	28.33	8.34 ± 0.16	neg	23.8 ± 0.2	13.8 ± 0.2	nd		
303.15	16.22	13.8 ± 0.2	neg	30.3 ± 0.3	17.0 ± 0.2	nd		
313.15	10.10	20.6 ± 0.3	neg	37.7 ± 0.4	20.2 ± 0.2	nd		
323.15	6.73	27.6 ± 0.4	neg	45.9 ± 0.5	24.1 ± 0.3	nd		
333.15	4.74	37.7 ± 0.5	5.09 ± 0.13	46.7 ± 0.5	28.5 ± 0.3	7.4 ± 0.3		
343.15	3.56	48.6 ± 0.7	14.0 ± 0.2	53.2 ± 0.6	33.9 ± 0.4	3.5 ± 0.2		
353.15	2.71	61.5 ± 0.9	29.7 ± 0.4	60.4 ± 0.6	38.9 ± 0.4	2.1 ± 0.1		
363.15	2.13	76.3 ± 1.5	58.1 ± 0.9	65.1 ± 0.7	46.8 ± 0.4	1.3 ± 0.1		
			Men :	DA (1:1)				
293.15	20.41	7.99 ± 0.13	neg	25.2 ± 0.2	16.0 ± 0.2	nd		
303.15	12.81	13.1 ± 0.2	neg	31.5 ± 0.2	19.3 ± 0.2	nd		
313.15	8.54	19.8 ± 0.4	neg	39.2 ± 0.3	22.7 ± 0.2	nd		
323.15	6.00	27.2 ± 0.6	neg	47.9 ± 0.4	26.6 ± 0.3	nd		
333.15	4.41	40.3 ± 0.9	7.56 ± 0.14	48.3 ± 0.4	30.8 ± 0.3	5.3 ± 0.2		
343.15	3.47	52.9 ± 1.1	15.9 ± 0.2	54.9 ± 0.5	36.2 ± 0.4	3.3 ± 0.2		
353.15	2.70	71.8 ± 1.3	34.4 ± 0.3	61.0 ± 0.7	41.8 ± 0.4	2.1 ± 0.1		
363.15	2.18	85.2 ± 1.6	63.1 ± 1.0	70.6 ± 0.8	48.4 ± 0.5	1.4 ± 0.1		
			Men :	DA (1:2)				
293.15	16.01	8.77 ± 0.15	neg	26.0 ± 0.3	16.5 ± 0.2	nd		
303.15	10.47	14.0 ± 0.2	neg	32.4 ± 0.3	19.7 ± 0.2	nd		
313.15	7.45	19.9 ± 0.3	neg	39.6 ± 0.4	23.2 ± 0.2	nd		
323.15	5.45	25.4 ± 0.4	neg	47.6 ± 0.5	27.0 ± 0.3	nd		
333.15	4.14	36.9 ± 0.6	6.67 ± 0.15	50.2 ± 0.5	31.4 ± 0.3	5.5 ± 0.3		
343.15	3.24	50.6 ± 0.8	17.2 ± 0.3	56.1 ± 0.6	36.0 ± 0.4	3.0 ± 0.2		
353.15	2.68	66.9 ± 1.0	35.0 ± 0.5	63.5 ± 0.7	41.3 ± 0.4	1.9 ± 0.1		

Table S2 Recovered values for the rate constants of intramolecular excimer formation (k_a) and dissociation (k_d) , excimer deactivation (k_E) and monomer deactivation (k_M) along with equilibrium constant for excimer formation $(K^*_{eq,a})$ for 1-Py(CH₂)₁₀COO(CH₂)₆1-Py dissolved in the investigated DESs in the temperature range 293.15 K-363.15 K.

363.15	2.24	83.4 ± 1.6	64.4 ± 1.0	72.2 ± 0.8	47.4 ± 0.5	1.3 ± 0.1
			Thy:	DA (2:1)		
293.15	16.54	10.1 ± 0.2	neg	26.1 ± 0.2	14.7 ± 0.2	nd
303.15	10.00	16.3 ± 0.3	neg	33.1 ± 0.3	17.5 ± 0.2	nd
313.15	6.89	24.4 ± 0.4	neg	40.8 ± 0.4	20.3 ± 0.2	nd
323.15	4.86	31.3 ± 0.5	neg	49.1 ± 0.4	24.0 ± 0.2	nd
333.15	3.60	46.0 ± 0.6	5.88 ± 0.16	49.0 ± 0.5	27.9 ± 0.3	7.8 ± 0.3
343.15	2.94	58.7 ± 0.8	13.3 ± 0.2	54.9 ± 0.6	32.5 ± 0.3	4.4 ± 0.2
353.15	2.13	76.5 ± 1.3	29.0 ± 0.3	61.5 ± 0.6	37.4 ± 0.4	2.6 ± 0.1
363.15	1.73	93.1 ± 1.8	56.8 ± 0.7	67.6 ± 0.7	43.0 ± 0.4	1.6 ± 0.1
			Thy:	DA (1:1)		
293.15	15.08	9.09 ± 0.13	neg	26.5 ± 0.3	16.2 ± 0.2	nd
303.15	9.72	14.8 ± 0.2	neg	32.9 ± 0.3	19.2 ± 0.2	nd
313.15	6.93	21.4 ± 0.3	neg	40.2 ± 0.4	22.3 ± 0.2	nd
323.15	5.03	28.1 ± 0.4	neg	48.3 ± 0.5	25.9 ± 0.3	nd
333.15	3.80	40.2 ± 0.6	6.15 ± 0.16	48.4 ± 0.5	29.7 ± 0.3	6.5 ± 0.3
343.15	2.96	53.8 ± 0.9	15.0 ± 0.2	55.4 ± 0.5	34.4 ± 0.4	3.6 ± 0.2
353.15	2.38	70.6 ± 1.3	30.3 ± 0.3	63.7 ± 0.6	38.4 ± 0.4	2.3 ± 0.1
363.15	1.95	87.8 ± 1.8	56.5 ± 0.6	72.5 ± 0.7	44.0 ± 0.5	1.6 ± 0.1
			Thy:	DA (1:2)		
293.15	13.69	9.79 ± 0.15	neg	27.1 ± 0.3	16.7 ± 0.2	nd
303.15	9.34	15.0 ± 0.2	neg	33.6 ± 0.3	20.0 ± 0.2	nd
313.15	6.64	21.2 ± 0.2	neg	40.9 ± 0.4	23.7 ± 0.2	nd
323.15	4.94	27.2 ± 0.3	neg	49.0 ± 0.5	27.4 ± 0.3	nd
333.15	3.80	38.4 ± 0.4	6.70 ± 0.17	48.7 ± 0.5	31.8 ± 0.3	5.7 ± 0.3
343.15	3.01	52.2 ± 0.8	16.3 ± 0.2	54.7 ± 0.6	35.8 ± 0.4	3.2 ± 0.2
353.15	2.49	66.8 ± 1.2	32.0 ± 0.3	62.7 ± 0.7	40.9 ± 0.4	2.1 ± 0.1
363.15	2.06	85.2 ± 1.7	58.0 ± 0.6	74.7 ± 0.8	44.6 ± 0.4	1.5 ± 0.1
			Thy:	Men (5:1)		
293.15	29.35	9.87 ± 0.18	neg	23.8 ± 0.3	12.0 ± 0.2	nd
303.15	14.58	16.5 ± 0.3	neg	30.4 ± 0.4	13.9 ± 0.2	nd

313.15	8.50	25.0 ± 0.3	neg	37.9 ± 0.4	16.1 ± 0.2	nd
323.15	5.41	34.2 ± 0.4	neg	46.4 ± 0.5	18.4 ± 0.2	nd
333.15	3.71	47.6 ± 0.6	2.98 ± 0.14	47.4 ± 0.5	19.8 ± 0.2	16.0 ± 0.5
343.15	2.70	64.6 ± 1.0	9.34 ± 0.22	55.8 ± 0.6	21.9 ± 0.2	6.9 ± 0.4
353.15	2.05	84.0 ± 1.4	19.3 ± 0.3	65.1 ± 0.7	25.7 ± 0.3	4.4 ± 0.3
363.15	1.61	103 ± 2	40.5 ± 0.5	76.3 ± 0.9	31.8 ± 0.4	2.6 ± 0.2
			Thy:	Men (2:1)		
293.15	40.60	3.53 ± 0.06	neg	21.3 ± 0.3	15.4 ± 0.3	nd
303.15	19.20	7.99 ± 0.25	neg	27.6 ± 0.3	18.9 ± 0.3	nd
313.15	10.58	14.0 ± 0.3	neg	34.8 ± 0.4	22.6 ± 0.3	nd
323.15	6.50	21.0 ± 0.4	neg	42.8 ± 0.4	26.6 ± 0.3	nd
333.15	4.33	30.2 ± 0.6	2.05 ± 0.12	45.6 ± 0.5	30.6 ± 0.4	14.7 ± 0.5
343.15	3.08	43.8 ± 0.8	9.52 ± 0.24	52.4 ± 0.6	34.8 ± 0.4	4.6 ± 0.3
353.15	2.29	61.5 ± 1.3	21.0 ± 0.3	60.0 ± 0.7	38.9 ± 0.4	2.9 ± 0.2
363.15	1.77	83.8 ± 1.7	43.8 ± 0.5	68.4 ± 0.8	42.9 ± 0.4	1.9 ± 0.2
			Thy:	Men (1:1)		
293.15	54.98	3.00 ± 0.05	neg	21.9 ± 0.2	14.2 ± 0.2	nd
303.15	24.52	7.26 ± 0.12	neg	26.1 ± 0.2	17.5 ± 0.2	nd
313.15	12.94	13.6 ± 0.2	neg	33.4 ± 0.3	21.0 ± 0.2	nd
323.15	7.68	19.9 ± 0.3	neg	41.6 ± 0.4	25.5 ± 0.3	nd
333.15	4.95	30.7 ± 0.5	2.78 ± 0.15	44.2 ± 0.5	29.4 ± 0.3	11.0 ± 0.4
343.15	3.60	45.3 ± 0.7	10.3 ± 0.2	49.9 ± 0.5	34.9 ± 0.3	4.4 ± 0.3
353.15	2.65	63.8 ± 1.2	23.0 ± 0.3	58.9 ± 0.6	38.6 ± 0.4	2.8 ± 0.2
363.15	2.03	85.8 ± 1.8	46.1 ± 0.5	66.3 ± 0.7	44.4 ± 0.4	1.9 ± 0.2
			Thy:	Men (1:2)		
293.15	64.93	3.47 ± 0.06	neg	23.0 ± 0.3	13.2 ± 0.2	nd
303.15	28.45	8.17 ± 0.13	neg	25.9 ± 0.3	16.4 ± 0.2	nd
313.15	14.54	14.7 ± 0.2	neg	34.1 ± 0.4	19.9 ± 0.2	nd
323.15	8.40	22.3 ± 0.3	neg	42.4 ± 0.4	24.0 ± 0.3	nd
333.15	5.29	31.5 ± 0.5	2.22 ± 0.14	45.8 ± 0.5	28.5 ± 0.3	14.1 ± 0.4
343.15	3.59	46.1 ± 0.6	10.4 ± 0.2	52.6 ± 0.6	33.8 ± 0.4	4.4 ± 0.3
353.15	2.59	62.6 ± 0.9	24.4 ± 0.3	60.1 ± 0.7	39.6 ± 0.4	2.6 ± 0.2

363.15	2.00	83.7 ± 1.7	47.0 ± 0.5	68.5 ± 0.8	44.5 ± 0.4	1.8 ± 0.2
Thy : Men (1:5)						
293.15	88.55	3.52 ± 0.06	neg	26.5 ± 0.3	12.8 ± 0.1	nd
303.15	34.38	8.42 ± 0.14	neg	26.2 ± 0.3	16.1 ± 0.2	nd
313.15	16.70	15.2 ± 0.2	neg	34.3 ± 0.4	20.2 ± 0.2	nd
323.15	9.25	23.5 ± 0.4	neg	43.8 ± 0.5	24.5 ± 0.3	nd
333.15	5.65	35.5 ± 0.5	5.31 ± 0.24	44.9 ± 0.5	29.8 ± 0.3	6.7 ± 0.3
343.15	3.73	51.5 ± 0.7	14.8 ± 0.3	50.5 ± 0.6	35.5 ± 0.4	3.5 ± 0.3
353.15	2.63	70.6 ± 1.4	29.0 ± 0.4	58.2 ± 0.7	40.9 ± 0.4	2.4 ± 0.2
363.15	2.04	101 ± 2	57.5 ± 0.7	67.4 ± 0.8	45.2 ± 0.5	1.8 ± 0.2

^aReference 39 neg: negligible nd: not defined

Figure S1. Relative steady-state fluorescence emission spectra [$\lambda_{ex} = 340$ nm (Xe arc lamp); excitation and emission slits are 1 and 1 nm, respectively] of $1-Py(CH_2)_{10}COO(CH_2)_61-Py$ (10 μ M) dissolved in the investigated DESs at different temperatures.

Figure S2. Normalized steady-state fluorescence emission spectra [$\lambda_{ex} = 340$ nm (Xe arc lamp); excitation and emission slits are 1 and 1 nm, respectively] of 1-Py(CH₂)₁₀COO(CH₂)₆1-Py (10 μ M) dissolved in the investigated DESs at different temperatures.

Figure S3. Variation of $I_{\rm M}$ (at 377 nm) and $I_{\rm E}$ (at 480 nm) with temperature (K) for 1-Py(CH₂)₁₀COO(CH₂)₆1-Py (10 μ M) dissolved in the investigated DESs.

Figure S4. Variation of I_E/I_M with temperature (K) for 1-Py(CH₂)₁₀COO(CH₂)₆1-Py (10 μ M) dissolved in the investigated DESs.

Figure S5. Emission wavelength-dependent fluorescence excitation spectra of $1-Py(CH_2)_{10}COO(CH_2)_61-Py(10 \ \mu M)$ dissolved in the investigated DESs recorded while monitoring the emission at 377 nm and 480 nm, respectively, at 293.15 K.

Figure S6. Plot of $\ln k_{\rm M}$ vs T⁻¹ for 1-Py(CH₂)₁₀COO(CH₂)₆1-Py (10 μ M; excitation with 340 nm NanoLED) dissolved in the investigated DESs.

Figure S7. Plot of $\ln k_a$ vs T⁻¹ for 1-Py(CH₂)₁₀COO(CH₂)₆1-Py (10 μ M; excitation with 340 nm NanoLED) dissolved in the investigated DESs.

Figure S8. Plot of $\ln k_d$ vs T⁻¹ for 1-Py(CH₂)₁₀COO(CH₂)₆1-Py (10 μ M; excitation with 340 nm NanoLED) dissolved in the investigated DESs.

Figure S9. Plot of $\ln k_E$ vs T⁻¹ for 1-Py(CH₂)₁₀COO(CH₂)₆1-Py (10 μ M; excitation with 340 nm NanoLED) dissolved in the investigated DESs.

Figure S10. Plot of $\ln K^*_{eq,a}$ vs T⁻¹ for 1-Py(CH₂)₁₀COO(CH₂)₆1-Py (10 μ M; excitation with 340 nm NanoLED) dissolved in the investigated DESs.