Supplementary Information

Substituent effects and electron delocalization in five-membered N-heterocycles

Paweł A. Wieczorkiewicz ${ }^{1, *}$, Tadeusz M. Krygowski², Halina Szatylowicz ${ }^{1, *}$
${ }^{1}$ Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
${ }^{2}$ Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

Table of Contents Page Computational details S2-S3
Figure S1. Relations between characteristics of five-membered N -heterocyclic rings and number S4of cyclically delocalized electrons, $\operatorname{EDDB}_{p}(\pi)$.Table S1. Coefficients a (slope) and R^{2} of linear correlations between $\operatorname{EDDBp}(\pi)$ and $\operatorname{cSAR}(X)$S4presented in Figure 2.
Table S2. Isosurfaces of $\operatorname{EDDB}(\pi)$ function (0.02), representing the density of cyclicallyS5-S16
delocalized π-electrons.
Figure S2. Relationships between $\operatorname{EDDB}_{\mathrm{p}}(\pi)$ and resonance substituent constant R.S17
Figure S3. Relations between lengths of bonds In the ring and resonance R constants (left S18-S24column) or the number of cyclically delocalized π-electrons, $\operatorname{EDDBp}(\pi)$ (right column).
Figure S4. NBO analysis - natural hybrid orbital character of hybrids at ring atoms. Example - C4
substituted pyrazole derivatives (pyraC4). S25
Table S3. Crystallographic data found for monosubstituted compounds in CCSD.S26
Figure S5. π-Orbital shapes independent of X substituent type. S27
Table S4. Isosurfaces of EDDBG-p function (0.02 electrons) - a visual representation of non-cyclic S27-S38electron delocalization.
Table S5. Values of $\operatorname{cSAR}(\mathrm{X})$ for $\mathrm{NO}_{2}, \mathrm{Cl}$ and NH_{2} substituents, the number of inductive andresonance interactions between substituent and endocyclic N atoms in each heterocycle andresonance structures associated with resonance effect of substituents.
Table S6. Values of $\operatorname{cSAR}(\mathrm{X})$ of $\mathrm{NO}_{2}, \mathrm{Cl}$ and NH_{2} substituents in derivatives of selected six- S40 membered heterocycles.Figure S6. Relations between geometric aromaticity indices and the number of cyclicallyS40
delocalized electrons from the $\operatorname{EDDB}_{\mathrm{p}}(\pi)$ function.
Figure S7. Non covalent interaction analysis (NCl method). Reduced density gradient isosurfacesS41-S42
(RDG $=0.5$), colored according to the value of $\operatorname{sgn}\left(\lambda_{2}(r)\right) \cdot \rho(r)$.Table S7. Keto, thioketo and imino forms of studied five-membered heterocycles with theirS42
$\operatorname{EDDBp}(\pi), \operatorname{cSAR}(\mathrm{X})$, HOMED, CX bond lengths (d_{cx}) and $\Delta \mathrm{E}$ values (in $\mathrm{kcal} / \mathrm{mol}$).
Figure S8. Anisotropy of the induced current density (AICD) plots and EDDBp isosurfaces (0.02) for S43
enol and keto forms of substituted imidazole and pyrazole.Figure S9. Correlation between the number of cyclically delocalized electrons and electronS44
withdrawing properties of $=\mathrm{NH} /=\mathrm{O} /=\mathrm{S}$ groups for all studied heterocycles.Figure S10. Energies of HOMO, LUMO and the HOMO-LUMO gap ($\triangle \mathrm{H}-\mathrm{L}$) as a function ofS44-S46
cSAR(X).
Table S8. Summary of slopes from Figure S10.S46
Table S9. Reference bonds lengths (Å) calculated at revDSD-PBEP86-G3BJ/def2-TZVPP level of S46theory and values of HOMED normalization constants α.Table S10. AICD plots (isosurface $=0.03$) of selected substituted and unsubstituted systems.

Computational details

Geometry optimizations and all electronic structure calculations were performed using DFT with double-hybrid functional at revDSD-PBEP86-G3BJ/def2-TZVPP level of theory ${ }^{1,2}$ (tight convergence criteria, UltraFine grid) in Gaussian 16 C .01 program. ${ }^{3}$ This functional is one of the most accurate DFT methods as tested in several benchmarks. ${ }^{1}$ Vibrational frequencies calculations were performed to confirm that each optimized geometry correspond to the minimum on the potential energy surface. Natural orbital calculations were performed using NBO 7 software. ${ }^{4}$

EDDB is a method which allows a very detailed analysis of electron delocalization directly from the information encoded in the wavefunction. In EDDB the total electron density is decomposed into the densities of electrons localized at atoms (core electrons, lone pairs), localized at chemical bonds, and delocalized between several bonds. The last density is called electron density of delocalized bonds (EDDB), from which the method takes its name. Full theory on how decomposition is performed we refer the readers to the cited articles. ${ }^{5-8}$

The EDDB can be further decomposed into contributions from different delocalization types. EDDB ${ }_{G}$ (G - global) contains all delocalized electrons, EDDB $_{H}$ excludes the contribution from bonds with H atoms, while EDDB $_{p}$ contains only electrons delocalized in cyclic Kekulean pathway (excluding cross-ring delocalization associated in benzene with Dewar forms). Each of the delocalization types can be quantitatively analyzed in terms of contributions from electrons of σ, π and other orbital symmetries. Hence, in this paper, $\operatorname{EDDB}_{p}(\pi)$ are the cyclically delocalized π electrons. The delocalized electron density grids can be visualized in the form of isosurfaces and subtracted from each other. For example, $\mathrm{EDDB}_{\mathrm{G}-\mathrm{p}}=\mathrm{EDDB}_{\mathrm{G}}-\mathrm{EDDB}_{\mathrm{p}}$ function is the global electron density minus the cyclically delocalized electron density, in other words, it is a density of non-cyclically delocalized electrons. All EDDB calculations were performed using the density matrices in the NBO basis. EDDB grids were generated in cubegen subprogram available within Gaussian 16 C. 01 .

HOMA 9,10 and HOMED ${ }^{11,12}$ geometric aromaticity indices were calculated from Equation 1:

$$
\begin{equation*}
\text { HOMA, HOMED }=1-\frac{1}{n} \sum_{j}^{n} \alpha_{j}\left(d_{\mathrm{o}, \mathrm{j}}-d_{\mathrm{j}}\right)^{2} \tag{1}
\end{equation*}
$$

where n is the number of bonds in considered fragment, α_{j} is the normalization constant for j bond, for HOMA tabularized (but can also be calculated for specific computational level, Equation 2).

$$
\begin{equation*}
\alpha_{j}=2\left\{\left(d_{\mathrm{o}}-d_{\mathrm{s}}\right)^{2}+\left(d_{\mathrm{o}}-d_{\mathrm{d}}\right)^{2}\right\}^{-1} \tag{2}
\end{equation*}
$$

For HOMED, if the number of bonds considered is even, Equation 1 is also used. However, if the fragment has odd number of bonds, α_{j} in HOMED is calculated from Equations 3 or 4:
for a system with i double bonds and $i+1$ single bonds:

$$
\begin{equation*}
\alpha_{j}=(2 i+1) \cdot\left\{(i+1)\left(d_{\mathrm{o}}-d_{\mathrm{s}}\right)^{2}+i\left(d_{\mathrm{o}}-d_{\mathrm{d}}\right)^{2}\right\}^{-1} \tag{3}
\end{equation*}
$$

for a system with $i+1$ double bonds and i single bonds:

$$
\begin{equation*}
\alpha_{j}=(2 i+1) \cdot\left\{i\left(d_{\mathrm{o}}-d_{\mathrm{s}}\right)^{2}+(i+1)\left(d_{\mathrm{o}}-d_{\mathrm{d}}\right)^{2}\right\}^{-1} \tag{4}
\end{equation*}
$$

In this paper HOMA was calculated using standard parameters, ${ }^{10}$ while HOMED was parametrized at revDSD-PBEP86-G3BJ/def2-TZVPP level of theory, using reference systems proposed by Raczynska. ${ }^{11}$ The reference
bond lengths are provided in the Table S9. Calculation of HOMA and HOMED values, as well as EDDB grid subtraction was performed in Multiwfn program. ${ }^{13}$

Anisotropy of the induced current density (AICD) ${ }^{14}$ maps were generated using Gaussian and AICD 3.03 program at B3LYP/6-311+G(d,p), NMR=CSGT, with contribution of all orbitals.

Electron donating and withdrawing properties were assessed using the cSAR method. cSAR of substituent X is calculated from Equation 5:

$$
\begin{equation*}
\operatorname{cSAR}(\mathrm{X})=q(\mathrm{X})+q(\text { ipso }) \tag{5}
\end{equation*}
$$

where $q(X)$ is the sum of charges at all atoms of X, and $q(i p s o)$ is the charge at the ipso atom of the substituted system, the atom to which X is attached. In this paper, Hirshfeld atomic charges were used. ${ }^{15}$

References

1 G. Santra, N. Sylvetsky and J. M. L. Martin, J. Phys. Chem. A, 2019, 123, 5129-5143.
2 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
3 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Rev. C. 012016.
4 Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M., Karafiloglou, P, Landis, C. R., and Weinhold, F., NBO 7.0 Theoretical Chemistry Institute, University of Wisconsin, Madison 2018.

5 D. W. Szczepanik, M. Andrzejak, K. Dyduch, E. Żak, M. Makowski, G. Mazur and J. Mrozek, Phys. Chem. Chem. Phys., 2014, 16, 20514-20523.
6 D. W. Szczepanik, Comput. Theor. Chem., 2016, 1080, 33-37.
7 D. W. Szczepanik, M. Andrzejak, J. Dominikowska, B. Pawełek, T. M. Krygowski, H. Szatylowicz and M. Solà, Phys. Chem. Chem. Phys., 2017, 19, 28970-28981.
8 D. W. Szczepanik and M. Solà, in Aromaticity, Elsevier, 2021, pp. 259-284.
9 J. Kruszewski and T. M. Krygowski, Tetrahedron Let., 1972, 13, 3839-3842.
10 T. M. Krygowski, J. Chem. Inf. Comput. Sci., 1993, 33, 70-78.
11 E. Raczyńska, Symmetry, 2019, 11, 146.
12 E. D. Raczyńska, M. Hallman, K. Kolczyńska and T. M. Stępniewski, Symmetry, 2010, 2, 1485-1509.
13 T. Lu and F. Chen, J Comput. Chem., 2012, 33, 580-592.
14 Geuenich, D.; Hess, K.; Köhler, F.; Herges, R. Chem. Rev. 2005, 105 (10), 3758-3772
15 F. L. Hirshfeld, Theoret. Chim. Acta, 1977, 44, 129-138.

Figure S1. Relations between characteristics of five-membered N-heterocyclic rings and number of cyclically delocalized electrons, $\operatorname{EDDBp}(\pi)$.

Table S1. Coefficients a (slope) and R^{2} of linear correlations $\operatorname{EDDB}_{\mathrm{P}}(\pi)$ vs $\operatorname{cSAR}(X)$ presented in Figure 2.

	R^{2}	
imiC2	-6.865	0.919
1,2,4-triC3 (N1H)	-5.014	0.872
pyraC3	-4.962	0.902
pyraC5	-4.252	0.785
1,2,4-triC5	-3.844	0.882
1,2,4-triC3 (N 4 H)	-3.703	0.926
pyrrC2	-2.621	0.448
1,2,3-triC5	-2.421	0.768
1,2,3-triC4 (N2H)	-2.383	0.290
imiC5	-2.070	0.724
imiC4	-2.018	0.781
pyrrC3	0.065	0.001
1,2,3-triC4 (N1H)	0.523	0.081
pyraC4	3.751	0.842

Table S2. Isosurfaces of $\operatorname{EDDB}_{\mathrm{p}}(\pi)$ function (0.02), representing the density of cyclically delocalized π-electrons.
CN
coses)
$\mathbf{N H 2}$

OH

OH
Cl
OH
NO
SH
$=\mathrm{NH}$

Figure S2. Relationships between $\operatorname{EDDB}_{\mathrm{p}}(\pi)$ and resonance substituent constant R.

pyrrC2

pyrrC3

pyraC3
$1 \mathrm{HN}_{4}^{-}$

imiC4

imiC5

1,2,3-triC4 (N1H)

1,2,3-triC5 (N1H)

1,2,4-triC3 (N1H)

$$
\begin{gathered}
\text { C3-N4 } \mathrm{y}=-0.0106 \mathrm{x}+1.3627 \\
R^{2}=0.7101
\end{gathered}
$$

$$
R^{2}=0.7101
$$

$$
\mathrm{N} 1-\mathrm{N} 2 \mathrm{y}=-0.0253 \mathrm{x}+1.3496
$$

1,2,4-triC3 (N4H)
1 N-N

$\mathrm{C} 5-\mathrm{N} 1: \mathrm{y}=0.0123 \mathrm{x}+1.2891$

Figure S3. Relations between lengths of bonds In the ring and resonance R constants (left column) or the number of cyclically delocalized π-electrons, $\operatorname{EDDB}_{\mathrm{p}}(\pi)$ (right column).
n in sp^{n} hybrids (NBO analysis)

Figure S4. NBO analysis - natural hybrid orbital character of hybrids at ring atoms. Example - C4 substituted pyrazole derivatives (pyraC4).

Table S3. Crystallographic data found for monosubstituted compounds in CCSD.

1,2,4-triC3 (N4H)

		N1-N2	N2-C3	C3-N4	N4-C5	C5-N1
NH2	-0.74	1.3917	1.3074	1.3650	1.3724	1.3028
exp		1.3875	1.3375	1.3465	1.3643	1.2943

[1] 10.1107/S0108270191008065, [2] 10.5517/cc1jOndl, [3] 10.1107/S010827018400384X, [4] 10.5517/ccdc.csd.cc25wqd6, [5] 10.5517/ccq5bfm, [6] 10.1107/s0108768194004180, [7] 10.5517/cc3tyys, [8] 10.5517/cc52rnm, [9] 10.1021/ol701602a, [10] G.Evrard, F.Durant, A.Michel, J.G.Fripiat, J.L.Closset, A.Copin, Bull. Soc. Chim. Belg. 1984, 93, 233, [11] 10.5517/cc5dn4b, [12] M.S.Idrissi, M.Senechal, H.Sauvaitre, M.Cotrait, C.Garrigou-Lagrange, J.Chim.Phys., 1980, 77, 195, [13] 10.5517/ccdc.csd.cczcy5f

HOMO

HOMO-1

HOMO-2,-3 or -4 lowest energy π-orbital

Figure S5. π-Orbital shapes independent of X substituent type.
Table S4. Isosurfaces of EDDBG.p function (0.02 electrons) - a visual representation of non-cyclic electron delocalization.
A

cl			
F			
H			
SH			
=s			
он			

=0			
NH_{2}			
=nh			

Py

$$
\begin{aligned}
& \text { का को के } \\
& \text { 论 हो है } \\
& \text { थे हैं है } \\
& \text { O } \\
& \text { को हो से } \\
& \text { 多 }
\end{aligned}
$$

cosers)

(

a			
F			
H			
st			
$=5$			

yr	ger
9_{0}^{9}	
y_{0}^{9}	G-0

9	${ }^{9}$	5
go	y^{2}	
y_{0}^{9}	9^{2}	36
go	No	
yod	${ }_{0}^{9}$	

Table S5. Values of $\operatorname{cSAR}(\mathrm{X})$ for $\mathrm{NO}_{2}, \mathrm{Cl}$ and NH_{2} substituents, the number of inductive and resonance interactions between substituent and endocyclic N atoms in each heterocycle and resonance structures associated with resonance effect of substituents.

	indN ${ }^{\text {a }}$	resN ${ }^{\text {b }}$	indN_2 ${ }^{\text {c }}$	NO_{2}	Cl	NH_{2}
1,2,4-triC5 (N1H)	20	$\begin{aligned} & 10 \\ & 1 p \end{aligned}$	1	0.000	0.119	0.230
1,2,4-triC3 (N4H)	20	10	1	-0.043	0.097	0.195
1,2,4-triC3 (N1H)	20	10	1	-0.045	0.072	0.186
imiC2	20	10	0	-0.056	0.079	0.182
1,2,3-triC5 (N1H)	10	$1 p$	2	-0.101	0.033	0.135
pyraC5	10	$1 p$	1	-0.112	0.024	0.126
1,2,3-triC4 (N2H)	10	10	2	-0.118	0.003	0.115
pyraC3	10	10	1	-0.128	-0.007	0.104
1,2,3-triC4 (N1H)	10	0	2	-0.140	-0.016	0.092
imiC4	10	0	1	-0.164	-0.034	0.079
imiC5	10	0	1	-0.164	-0.014	0.062
pyrrC2	10	0	0	-0.177	-0.018	0.058
pyraC4	0	0	2	-0.224	-0.095	0.020
pyrrC3	0	0	1	-0.216	-0.103	0.012

resonance (singly excited structures) ${ }^{\text {d }}$

${ }^{\mathrm{a}}$ ind N - the number of endocyclic N atoms in ortho positions relative to substituent, 20 - grey shading of compound name, 10 - light grey shading, $0-$ no shading.
${ }^{\text {b }}$ res N - the number of endocyclic N atoms interacting via resonance (singly excited structures) with substituent and their position relative to substituent: o - ortho, p - para.
${ }^{c}$ indN_2 - the number of non-ortho endocyclic N atoms interacting via induction with substituent.
${ }^{d}$ electron-donating substituent delocalizes negative charge, electron-withdrawing positive; the structures look similar.

Table S6. Values of $\operatorname{cSAR}(\mathrm{X})$ of $\mathrm{NO}_{2}, \mathrm{Cl}$ and NH_{2} substituents in derivatives of selected six-membered heterocycles. Data taken from Molecules 2021, 26 (21), 6543.

	NO_{2}	Cl	NH_{2}
triazine	0.043	0.124	0.292
pyrimidineC2	0.000	0.083	0.244
pyrimidineC4	-0.038	0.054	0.213
pyrazine	-0.065	0.031	0.181
pyridineC2	-0.078	0.016	0.163
pyridineC4	-0.097	-0.004	0.140
pyrimidineC5	-0.118	-0.020	0.113
pyridineC3	-0.128	-0.030	0.103

Figure S6. Relations between geometric aromaticity indices and the number of cyclically delocalized electrons from the $\operatorname{EDDB}_{\mathrm{p}}(\pi)$ function.

imiC2-NO2
$2.410 \AA$ A , 91.9 deg

pyrrC2-NO2
$2.404 \AA$ Å, 93.08 deg

pyrrC2-NH2
2.623 Å, 65.93 deg

pyraC5-NH2
2.700 Å, 61.72 deg

pyrrC2-OH
2.575 Å, 64.33 deg

imiC5-NO2
2.461 Å, 91.01 deg

pyrrC3-NO2
imiC4-NH2
2.474 Å, 73.95 deg

pyraC3-NH2
2.467 Å, 72.56 deg

pyraC5-OH
2.625 Å, 61.49 deg

imiC4-NO2

pyraC3-NO2

imiC5-NH2
2.674 Å, 64.21 deg

pyraC5-NO2
2.481 Å, 89.44 deg

pyraC3-OH
2.338 Å, 78.02 deg

pyraC5-SH
$2.966 \AA$ Å, 66.75 deg

pyraC3-SH
2.574 Å, 80.99 deg

Figure S7. Non covalent interaction analysis (NCI method). Reduced density gradient isosurfaces (RDG $=0.5$), colored according to the value of $\operatorname{sgn}\left(\lambda_{2}(r)\right) \cdot \rho(r)$. Distances and angles of $D H \cdots A$ ortho contacts $(D=N, O, S ; A=$ N, O).

Table S7. Keto, thioketo and imino forms of studied 5 -membered heterocycles with their $\operatorname{EDDB}(\pi), \operatorname{cSAR}(X)$, HOMED, CX bond lengths ($d_{c x}$) and ΔE values (in kcal/mol).

	cyclic π-electron delocalization									
$\operatorname{EDDBp}(\pi)$	2.050	1.581	1.365	0.896	0.713	0.605	0.564	0.491	0.474	0.471
HOMED	0.881	0.820	0.853	0.744	0.818	0.764	0.745	0.805	0.778	0.838
cSAR(X)	-0.416	-0.322	-0.272	-0.306	-0.165	-0.183	-0.221	-0.237	-0.167	-0.223
$d_{c x} / \AA{ }^{\text {A }}$	1.241	1.223	1.223	1.228	1.214	1.218	1.215	1.223	1.210	1.220
$\Delta E^{\text {a }}$	33.8	45.6	15.9	7.7	-6.8 thioketo	$\begin{gathered} -9.0 \\ \operatorname{orms}(=S) \end{gathered}$	15.6	12.5	13.5	15.9
$\operatorname{EDDBp}_{(}(\pi)$	2.225	2.203	2.222	1.310	0.930	0.831	0.853	0.762	0.825	0.803
HOMED	0.961	0.924	0.940	0.862	0.882	0.840	0.854	0.897	0.860	0.921
cSAR(X)	-0.564	-0.450	-0.389	-0.444	-0.253	-0.283	-0.333	-0.340	-0.256	-0.316
$d_{c x} / \AA{ }^{\text {a }}$	1.698	1.673	1.668	1.679	1.653	1.662	1.662	1.666	1.650	1.660
$\Delta E^{\text {b }}$	35.3	38.8	9.7	11.1	-6.6 imino fo	$\begin{gathered} -8.3 \\ m s(=N H) \end{gathered}$	14.7	14.0	16.2	17.1
$\operatorname{EDDBp}(\pi)$	1.775	0.982	1.113	0.889	0.619	0.583	0.562	0.011	0.403	0.406
HOMED	0.886	0.838	0.877	0.813	0.810	0.749	0.802	0.593	0.773	0.845
cSAR(X)	-0.391	-0.279	-0.241	-0.281	-0.130	-0.150	-0.197	-0.135	-0.137	-0.188
$d_{c x} / \AA{ }^{\text {a }}$	1.309	1.293	1.291	1.298	1.281	1.285	1.285	1.281	1.277	1.288
$\Delta E^{\text {c }}$	55.7	65.0	36.6	30.9	13.4	11.0	34.7	22.9	30.4	34.0

a - the energy of keto form relative to the enol form; b - the energy of thioketo form relative to the thiol form; c - the energy of imino form relative to the amino form.

AICD		
EDDB ${ }_{\text {P }}$		
AICD		
EDDB ${ }_{\text {p }}$		

Figure S8. Anisotropy of the induced current density (AICD) plots (isosurface=0.03) and EDDB isosurfaces (0.02) with corresponding populations of cyclically delocalized electrons for enol and keto forms of substituted imidazole and pyrazole.

Figure S9. Correlation between the number of cyclically delocalized electrons and electron withdrawing properties of $=\mathrm{NH} /=\mathrm{O} /=\mathrm{S}$ groups for all studied heterocycles.

Figure S10. Energies of HOMO, LUMO and the HOMO-LUMO gap ($\triangle \mathrm{H}-\mathrm{L}$) as a function of $\mathrm{cSAR}(\mathrm{X})$.
Table S8. Summary of slopes from Figure S9.

	HOMO	LUMO
1,2,4-triC3(N1H)	9.311	11.143
1,2,3-triC4(N1H)	9.177	8.875
pyraC4	8.525	9.309
1,2,3-triC4(N2H)	8.466	6.861
1,2,3-triC5(N1H)	8.194	11.657
1,2,4-triC5(N1H)	8.191	13.351
1,2,4-triC3(N4H)	8.034	7.678
pyraC3	7.640	10.898
imiC4	7.427	8.522
pyrrC3	6.844	8.254
imiC5	6.488	10.962
pyrrC2	5.965	10.528
pyraC5	5.951	4.627
imiC2	5.495	11.288

Table S9. Reference bonds lengths (Å) calculated at revDSD-PBEP86-G3BJ/def2-TZVPP level of theory and values of HOMED normalization constants α.

HOMED	$d_{\text {s }}$	$d_{\text {d }}$	d_{0}	α
CC	1.5266 ethane	1.3312 ethene	1.3936 benzene	82.226
CN	1.4643 methylamine	1.2709 methylimine	1.3337 triazine	84.611
NN	1.4687	1.2399		

Table S10. AICD plots (isosurface $=0.03$) of selected substituted and unsubstituted systems.

124-triazole N4H	tetrazole-N1H
tetrazole-N2H	imiC2-CN
imiC2-NO2	imiC2-Cl

