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Scheme S1. Schematic illustration of the model applied to fit the NR data. For lipid PC and
+PG bilayers, a 4-layers model was employed, with a water layer in between the bilayer and
the quartz surface (1), followed by an inner polar headgroup (2), a hydrophobic tails (3), and a
outer polar headgroup (4) layer. The model assumes a homogeneous lateral distribution (i.e.,
over the bilayer plane) of the different lipid species and identical structural and compositional

features for the inner and outer lipid polar headgroup layers.
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Table S1. Input parameters used in the NR fits for the PC and the +PG bilayers. Structural
parameters for the different lipids are based on literature values for areas and volumes of full
acyl chains or fragments of these, assuming the same volumes for each hydrocarbon group,
1.e., =CH, -CH,, or CH3, for all acyl chain types (1). All SLD values were calculated from the
molecular volumes and nuclear scattering lengths. For POPG, the variation in head group SLD
in the different contrasts (d-, qm- and h-buffer), due to partial hydrogen exchange, was
considered. The remaining SLD values were calculated from the molecular volumes and
nuclear scattering lengths to 4.18 for quartz, -0.56 for the h-buffer, 6.1-6.3 for the d-buffer, and
4.18 for the qm-buffer, all expressed as 10¢ A2,

Parameters POPC | PAPC POPG
Molecular volume (A3)? | 1255 1277 1181
Head volume (A3) 331b 331b 257¢
Tail volume (A3)d 924 946 924

2.5 (h)
Head SLD (106 A-2)e 1.82 1.82 2.8 (gm)

3.2 (d)
Tail SLD (106 A-2)e -0.306 | -0.065 -0.306

a: calculated as Vtotal = Veait T Vhead,
b: from (2)
c: from (3)

d: calculated as ; based on (1).

Y(N.-b.
R
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Table S2. Summary of structural data obtained from NR fits for PC and +PG bilayers before

and after 20 ppm EFK17-W-TiO, NP deposition, as well as after 2 h of in situ UV exposure.

Input parameters (i.e., SLD values and head group thicknesses (Thick)) are shown in bold,

fixed and assumed constant. Shown also are fitted structural parameters, including thickness

(Thick), hydration (Hyd), roughness (Rough) for each head and tail layer, area per molecule

(APM), and surface coverage (I'). These parameters were obtained fitting the NR profiles by

using the Genetic Optimization method the available on the analysis package Motofit within

the software IGOR Pro (4,5), according to a 4-layers model (Scheme S1). A Monte Carlo error

analysis allowing for refitting data 100 times was employed to minimize the uncertainty

Head groups Acyl chains
Total
APM r
SLD Thick Hyd Rough SLD Thick Hyd | Rough | Thick
(10 (106 (A?) (mg/m?)
Ay | D | A k| B e | BB
.\ 0.20 4.03 +
Initial 32+3 7+1 282+0.3 + 7+1 | 43+£1 | 63+4
0.07
0.05
+EFK17 304 + 0.10 3.80+
PC W-TiO, 1.82 7.5 0.3 7+1 -0.23 | 23.6+0.1 + 7+1 39+1 [ 66+4 0.05
0.05
0.30 3.70 +
+2h UV 311 8+1 22.4+0.1 + 8t1 | 371 | 68£5
0.05
0.05
.. 0.20 4.00 +
Initial 2.00 34+£2 7+1 29.2+0.2 + 8+1 | 44+1 | 634
0.06
(h) 0.02
2.1 0.30
+ + . -0. S0+
PG EFK17 (qm) TSl s7en | 71 | 0 | nason| = 841 | 3741 | 7224 3
-W-TiO, 0.05
0.01
2.17
(d) 34.0 2.60 +
+2h UV 41+ 1 9+1 19.2+0.2 Lol 8§+ 1 34+1 | 96+4 0.05

associated to data fitting (6).
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Figure S1. C;;-BODIPY oxidation kinetics, showing the effect of 100 ppm bare TiO, (top left),
EFK17-TiO, (top right), EFK17-d-TiO, (bottom left) and EFK17-W-TiO, (bottom right) for

+PG@G, +Chol and PC LUVs subjected to in situ UV exposure, in 10 mM acetate, pH 5.4. (n=3)
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Figure S2. CD spectra of TiO, NPs coated with EFK17 (A), EFK17-d (B) and EFK17-W (C)
in the absence and in the presence of PC LUVs. CD spectra of free peptides and peptides

incubated with PC LUVs (in the absence TiO, NPs) are also included for comparison. Shown

in (D) are results on alpha helix content (%) obtained from CD spectra fitting through the

Bestsel method (7). All measurements were performed at 25°C, in 10 mM Acetate, pH 5.4.

(n=3).
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Figure S3. CD spectra of TiO, NPs coated with EFK17 (A), EFK17-d (B) and EFK17-W (C)
in the absence and in the presence of +Chol LUVs. CD spectra of free peptides and peptides

incubated with +Chol LUVs (in the absence TiO, NPs) are also included for comparison.

Shown in (D) are results on alpha helix content (%) obtained from CD spectra fitting through

the Bestsel method (7). All measurements were performed at 25°C, in 10 mM Acetate, pH 5.4.

(n=3).
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Figure S4. (A) Representative QCM-d profiles showing the 7" overtone of AFrequency (Hz)
and ADissipation (-10°) changes during incubation of +PG with increasing concentrations of
free EFK17 (top), EFK17-d (middle) and EFK17-W (bottom) in the range 0-30 uM, in 10 mM
Acetate, pH 5.4. A final step of rinsing with buffer (in the absence of peptide) was also included
to check peptide binding reversibility. (B) Corresponding AFrequency shifts (Hz) following
the addition of free EFK17 (top), EFK17-d (middle) and EFK17-W (bottom) concentrations in
the range 0-30 uM, in 10 mM Acetate, pH 5.4. (n=3)
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Figure S5. Representative QCM-d profiles showing the 7t overtone of AFrequency (Hz) and
ADissipation (-10-°) changes during (A) binding from 5 ppm EFK17-TiO, to supported PC
(top), +Chol (middle) and +PG (bottom) bilayers, as well as (B) effect of UV illumination,
applied after rinsing with buffer and nanoparticle binding in 10 mM Acetate, pH 5.4. AF=0 and
AD=0 correspond to Frequency and Dissipation shifts for the lipid bilayer right before NP
binding (A) or UV illumination (B).



Binding B Oxidation

30 - 20 30 - 20
a5 o NPs &5 § 2V B
i 10, = T F10 =
= 101 @, > 104 2
2 B 2 A 2 O
G o o = g o o o
3 ] = o 0
o = o =S
o -10- —_ @ -10- —_
— — £ —
[ F-10 o L r-10 o
<1 -20- L1 < -20- >
30 T T T T T T T 20 =30 T T T T T —-20
0 2 4 6 8 10 12 0O 20 40 80 80 100 120
Time (minutes) Time (minutes)
30 - 20 30 - 20
N 2 NPs B N 27UV g
T S0 = T -0 =
S g 3 5+
g 3 = g O
£ o 0o 2 £ o -
0 = w =
5 o 5 o =
o p= | o = o
@ -10- —_ @ -10- —_
— —_ = BN -_—
[T F-10 o [ 10 o
<1 20 & <1 20 &
N N
-30 - T T T T T T T =20 '307 T T T T T \7'20
0 2 4 & 8 10 12 14 0 20 40 60 80 100 120
Time (minutes) Time (minutes)
30 - 20 30 - 20
T 2 NPs B N 21UV B
m F10 = T 10 =
= 104 ® = Ao 7]
) 1 ) v X
g o ———— Lo & g o Lo & 0
3 g 3 S @
o S o 3
@ -104 — @ -104 —_
—_ — e —
L F-10 o [ 10 o
< 20 & < -20- &
S N
-30 T T T T T T T -20 30~ T T T T T —--20
0 2 4 6 8 10 12 14 0 20 40 60 80 100 120
Time (minutes) Time (minutes)

Figure S6. Representative QCM-d profiles showing the 7t overtone of AFrequency (Hz) and
ADissipation (-10°%) changes during (A) binding from 5 ppm EFK17-d-TiO, to supported PC
(top), +Chol (middle) and +PG (bottom) bilayers, as well as (B) effect of UV illumination,
applied after rinsing with buffer and nanoparticle binding in 10 mM Acetate, pH 5.4. AF=0 and
AD=0 correspond to Frequency and Dissipation shifts for the lipid bilayer right before NP
binding (A) or UV illumination (B).
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Figure S7. Representative QCM-d profiles showing the 7t overtone of AFrequency (Hz) and
ADissipation (-10-%) changes during (A) binding from 5 ppm EFK17-W-TiQ, to supported PC
(top), +Chol (middle) and +PG (bottom) bilayers, as well as (B) effect of UV illumination,
applied after rinsing with buffer and nanoparticle binding in 10 mM Acetate, pH 5.4. AF=0 and
AD=0 correspond to Frequency and Dissipation shifts for the lipid bilayer right before NP
binding (A) or UV illumination (B).
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Figure S8. Representative QCM-d profiles showing the 7® overtone of AFrequency (Hz) and
ADissipation (-10) changes for supported +PG bilayers incubated with EFK17-W-TiO, at
different concentrations (0-100 ppm), during in situ UV illumination, applied after rinsing with
buffer and nanoparticle binding in 10 mM Acetate, pH 5.4. AF=0 and AD=0 correspond to
Frequency and Dissipation shifts for the lipid bilayer right before UV illumination.
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Figure S9. QCM-d results showing frequency shifts caused by 2 h of in situ UV illumination
on +PG bilayers incubated with 5 ppm of bare TiO,, EFK17-TiO,, EFK17-d-TiO, and EFK17-
W-TiO; NPs. AF=0 corresponds to the bilayer Frequency shift right before UV illumination.

All measurements were performed in 10 mM Acetate, pH 5.4. (n=3).
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Figure S10. (A) NR curves with best model fits and (B) corresponding SLD profiles for
supported PC bilayers before and after incubation with 20 ppm EFK17-W-TiO, NPs in d-
buffer (left), qm-buffer (middle), and h-buffer (right). Shown also are reflectivity curves with
best model fits and SLD profiles for the corresponding systems after 2 h of in situ UV exposure.

All experiments were performed in 10 mM acetate, pH 5.4.
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Figure S11. (A) NR curves with best model fits and (B) corresponding SLD profiles for
supported +PG bilayers before and after incubation with 20 ppm EFK17-W-TiO, NPs in d-
buffer (left), qm-buffer (middle), and h-buffer (right). Shown also are reflectivity curves with
best model fits and SLD profiles for the corresponding systems after 2 h of in situ UV exposure.

All experiments were performed in 10 mM acetate, pH 5.4.
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