Electronic Supplementary Information

Elucidating the non-covalent interactions in the thiazole-carbon dioxide

complexes through rotational spectroscopy and theoretical computations

Liuting Wang, Tingting Yang, Zhen Wang, and Gang Feng* School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China

Contents:

Table S1. Geometries and spectroscopic parameters of the four most stable isomers of the thiazole- $(CO_2)_2$ complex calculated at the B3LYP-D3BJ/def2-TZVP level of theory.

Table S2. The r_e coordinates of the most stable isomer of the thiazole-(CO₂)₂ complex calculated at the B3LYP-D3BJ/def2-TZVP level of theory.

Table S3. Geometries and spectroscopic parameters of the four most stable isomers of the thiazole- $(CO_2)_3$ complex calculated at the B3LYP-D3BJ/def2-TZVP level of theory.

Table S4. The r_e coordinates of the most stable isomer of the thiazole-(CO₂)₃ complex calculated at the B3LYP-D3BJ/def2-TZVP level of theory.

Table S5. The result of NBO analysis for the most stable isomer of thiazole-CO₂ complex.

Table S6. The result of NBO analysis for the most stable isomer of thiazole-(CO₂)₂ complex.

Table S7. The result of NBO analysis for the most stable isomer of thiazole-(CO₂)₃ complex.

Table S8. Experimental transition frequencies of the parent species of the thiazole-CO₂ complex.

Table S9. Experimental transition frequencies of the ${}^{13}C2$ isotopic species of the thiazole-CO₂ complex.

Table S10. Experimental transition frequencies of the ${}^{13}C5$ isotopic species of the thiazole-CO₂ complex.

Table S11. Experimental transition frequencies of the ${}^{34}S6$ isotopic species of the thiazole-CO₂ complex.

Table S12. Experimental transition frequencies of the ${}^{13}C7$ isotopic species of the thiazole-CO₂ complex.

Table S13. Experimental transition frequencies of the ${}^{13}C8$ isotopic species of the thiazole-CO₂ complex.

Isomer	TZ-2CO ₂ _1	TZ-2CO ₂ _2
$\Delta E (\text{kJmol}^{-1})$	0	2.4
<i>A</i> , <i>B</i> , <i>C</i> (MHz)	1269, 593, 479	1139, 733, 547
$ \mu_{a, b, c} $ (D)	2.3, 0.2, 0.2	1.9, 0.6, 0.3
Isomer	TZ-2CO ₂ _3	TZ-2CO ₂ _4
$\Delta E (\text{kJmol}^{-1})$	4.9	12.0
<i>A</i> , <i>B</i> , <i>C</i> (MHz)	1162, 487, 345	1381, 535, 465
$ \mu_{a, b, c} $ (D)	1.8, 1.0, 0.0	0.2, 0.6, 1.5

Table S1. Geometries and spectroscopic parameters of the four most stable isomers of the thiazole- $(CO_2)_2$ complex calculated at the B3LYP-D3BJ/def2-TZVP level of theory.

	Atom	a/Å	b/Å	$c/{ m \AA}$
-	N1	-0.512	-0.075	0.110
	C2	-1.235	-0.897	0.936
	C3	-2.588	-0.811	0.804
	S4	-2.981	0.346	-0.405
	C5	-1.297	0.632	-0.647
	H6	-0.945	1.354	-1.369
	H7	-0.713	-1.552	1.618
	H8	-3.350	-1.352	1.338
	09	2.283	-0.808	-1.348
	C10	1.956	-1.566	-0.534
	011	1.656	-2.349	0.267
	012	1.415	2.385	-0.331
	C13	1.865	1.666	0.460
-	O14	2.342	0.976	1.260

Table S2. The r_e coordinates of the most stable isomer of the thiazole-(CO₂)₂ complex calculated at the B3LYP-D3BJ/def2-TZVP level of theory.

Isomer	TZ-3CO ₂ _1	TZ-3CO ₂ _2
$\Delta E (\mathrm{kJmol}^{-1})$	0	0.5
<i>A</i> , <i>B</i> , <i>C</i> (MHz)	711, 464, 335	705, 394, 334
$ \mu_{a, b, c} $ (D)	1.8, 1.3, 0.0	2.2, 0.7, 0.1
Isomer	TZ-3CO ₂ _3	TZ-3CO ₂ _4
	یک مصب چیچی و	
$\Delta E (\mathrm{kJmol}^{-1})$	0.7	2.0
<i>A</i> , <i>B</i> , <i>C</i> (MHz)	647, 505, 350	667, 438, 395
$ \mu_{a, b, c} $ (D)	2.0, 1.3, 0.2	2.1, 0.4, 0.2

Table S3. Geometries and spectroscopic parameters of the four most stable isomers of the thiazole- $(CO_2)_3$ complex calculated at the B3LYP-D3BJ/def2-TZVP level of theory.

	5		
Atom	a/Å	b/Å	c/Å
N1	-0.348	0.785	0.349
C2	0.644	0.742	1.294
C3	1.733	1.517	1.030
S4	1.512	2.339	-0.464
C5	-0.029	1.581	-0.628
H6	-0.662	1.767	-1.482
H7	0.522	0.113	2.163
H8	2.626	1.642	1.619
09	-3.283	1.212	-0.581
C10	-3.247	0.431	0.275
011	-3.256	-0.350	1.132
O12	-0.309	-2.382	0.557
C13	-0.972	-2.039	-0.330
O14	-1.637	-1.727	-1.227
015	3.120	-1.688	0.753
C16	2.545	-1.457	-0.227
O17	1.984	-1.231	-1.217

Table S4. The r_e coordinates of the most stable isomer of the thiazole-(CO₂)₃ complex calculated at the B3LYP-D3BJ/def2-TZVP level of theory.

Fro	m thiazole to CO	2	From CO ₂ to thiazole			
Donor NBO ^a	Acceptor NBO ^b	$E^{(2)}/kJmol^{-1}$	Donor NBO	Acceptor NBO	$E^{(2)}/kJmol^{-1}$	
BD(1)C8-N4	RY*(4)C2	0.21	BD(1)C2-O1	RY*(8)N4	0.59	
BD(1)C8-N4	RY*(6)C2	0.84	BD(1)C2-O1	RY*(1)N4	0.71	
BD(1)C8-N4	RY*(5)O1	0.29	BD(1)C2-O1	RY*(1)N4	0.21	
BD(1)C8-H10	RY*(9)C2	0.42	BD(2)C2-O1	LP(2)N4	0.29	
BD(1)C5-N4	RY*(1)C2	0.67	BD(3)C2-O1	RY*(3)N4	2.34	
BD(1)C5-N4	RY*(7)C2	0.42	BD(3)C2-O1	RY*(6)N4	0.21	
BD(1)C5-H11	RY*(7)C2	0.42	BD(3)C2-O1	RY*(1)N4	0.54	
LP(1)N4	RY*(5)C2	0.33	BD(3)C2-O1	BD*(1)C2-N4	0.84	
LP(1)N4	RY*(5)C2	0.29	BD(1)C2-O1	RY*(1)N4	0.37	
LP(1)N4	RY*(24)C2	0.33	BD(3)O3	BD*(1)S6-C2	0.21	
LP(1)N4	RY*(3)O1	0.67	BD(3)C2-O1	BD*(1)C8-N4	0.33	
LP(1)N4	RY*(3)O3	0.29				
LP(1)N4	BD*(3)C2-O1	5.90				
LP(2)N4	BD*(2)C2-O1	0.33				

Table S5. The result of NBO analysis for the most stable isomer of the thiazole-CO₂ complex.

^aBD for 2-center bond, LP for 1-center valence lone pair the unstarred and starred labels corresponding to Lewis and non-Lewis NBOs, respectively. ^bRY* for 1-center Rydberg, and BD* for 2-center antibond, the unstarred and starred labels corresponding to Lewis and non-Lewis NBOs, respectively.

Fro	m thiazole to CO_2^a		From thiazole to CO_2^{p}				
Donor NBO ^c	Acceptor NBO ^d	$E^{(2)}/kJmol^{-1}$	Donor NBO	Acceptor NBO	$E^{(2)}/kJmol^{-1}$		
BD(1)C2-N1	RY*(1)C10	0.42	BD(1)C2-N1	RY*(8)C13	0.25		
BD(1)C2-H7	RY*(8)C10	0.46	BD(1)C2-H7	RY*(1)C13	0.25		
BD(1)C2-H7	RY*(4)O11	0.25	BD(1)C5-N1	RY*(1)C13	0.38		
BD(1)C5-H6	RY*(11)C10	0.29	BD(2)C5-N1	RY*(2)C13	0.25		
LP(1)N1	RY*(5)C10	0.29	BD(1)C5-H6	RY*(3)C13	0.54		
LP(1)N1	RY*(3)O11	0.25	BD(1)C5-H6	RY*(6)O12	0.25		
LP(1)N1	BD*(3)C10-O11	4.68	BD(1)C5-H6	RY*(1)O12	0.25		
LP(2)N1	BD*(3)C10-O11	2.01	LP(1)N1	RY*(1)C13	0.29		
			LP(1)N1	RY*(1)O14	0.25		
			LP(1)N1	BD*(1)C13-O14	0.38		
			LP(1)N1	BD*(1)C13-O14	3.55		
			LP(1)N1	BD*(1)C13-O14	0.75		
			LP(1)N1	BD*(1)C13-O14	0.96		
Fro	m CO_2^a to thiazole		From CO_2^a to CO_2^b				
BD(1)C10-O11	RY*(2)N1	0.42	LP(2)O9	BD*(2)C13-O14	0.54		
BD(3)C10-O11	LP(2)N1	0.42	LP(2)O9	BD*(3)C13-O14	0.84		
BD(3)C10-O11	BD*(1)C2-C3	0.33	LP(3)O9	BD*(2)C13-O14	0.25		
BD(3)C10-O11	BD*(2)C2-C3	0.25					
BD(3)C10-O11	BD*(1)C5-N1	0.29					
Fro	m CO_2^b to thiazole		Fi	rom CO_2^b to CO_2^a			
BD(1)C13-O14	RY*(2)N1	0.21	BD(2)C13-O14	BD*(2)C10-O9	0.25		
BD(3)C13-O14	LP(2)N1	0.21	BD(3)C13-O14	BD*(2)C10-O9	0.59		
BD(1)C13-O12	RY*(2)N1	0.29	BD(3)C13-O14	BD*(3)C10-O9	0.25		
LP(2)O12	RY*(10)N1	0.25	LP(1)O14	BD*(2)C10-O9	0.25		
LP(2)O12	BD*(1)S4-C5	0.67					
LP(2)O12	BD*(2)S4-C5	0.67					

Table S6. The result of NBO analysis for the most stable isomer of thiazole- $(CO_2)_2$ complex.

T

^aThe carbon atom number 10 of CO₂. ^bThe carbon atom number 13 of CO₂. ^cBD for 2–center bond, LP for 1–center valence lone pair the unstarred and starred labels corresponding to Lewis and non–Lewis NBOs, respectively. ^dRY* for 1–center Rydberg, and BD* for 2–center antibond, the unstarred and starred labels corresponding to Lewis and non–Lewis NBOs, respectively.

Fre	om thiazole to CO_2^a		From thiazole to CO_2^b					
Donor NBO ^c	Acceptor NBO ^d	$E^{(2)}/kJmol^{-1}$	Donor NBO	Acceptor NBO	$E^{(2)}/kJmol^{-1}$			
BD(1)C2-N1	RY*(4)C10	0.25	BD(1)C2-N1	RY*(1)C13	0.29			
BD(1)C2-N1	RY*(6)C10	0.33	BD(1)C2-H7	RY*(8)C13	0.29			
BD(1)C5-N1	RY*(1)C10	0.50	BD(1)C2-H7	RY*(5)O12	0.29			
BD(1)C5-N1	RY*(8)C10	0.21	LP(1)N1	RY*(4)C13	0.25			
BD(1)C5-H6	RY*(8)C10	0.38	LP(1)N1	BD*(2)C13-O14	0.42			
BD(1)C5-H6	RY*(5)O9	0.38	LP(1)N1	BD*(3)C13-O14	2.80			
LP(1)N1	RY*(5)C10	0.21	LP(2)N1	BD*(2)C13-O14	1.38			
LP(1)N1	RY*(3)O9	0.29	LP(2)N1	BD*(3)C13-O14	2.42			
LP(1)N1	BD*(2)C10-O11	0.63						
LP(1)N1	BD*(3)C10-O11	4.77						
LP(2)N1	BD*(2)C10-O11	0.67						
LP(2)N1	BD*(3)C10-O11	0.50						
Fr	om thiazole to CO_2^c		Fro	m CO_2^a to thiazole				
BD(1)C2-C3	RY*(6)C16	0.21	BD(1)C10-O11	RY*(2)N1	0.33			
BD(1)C2-C3	RY*(7)C16	0.21	BD(1)C10-O9	RY*(2)N1	0.42			
BD(2)C2-C3	RY*(5)C16	0.25	LP(2)O9	RY*(10)N1	0.38			
BD(2)C2-C3	BD*(2)C16-O15	2.47	LP(2)O9	BD*(1)S4-C5	0.67			
			LP(2)O9	BD*(2)S4-C5	0.38			
			BD(3)C10-O11	BD*(1)C2-N1	0.21			
Fre	om CO_2^b to thiazole		From CO_2^b to CO_2^a					
BD(1)C13-O12	RY*(2)N1	0.29	BD(3)C13-O14	BD*(2)C10-O11	0.29			
BD(2)C13-O14	LP(2)N1	0.25	BD(3)C13-O14	BD*(3)C10-O11	0.38			
BD(3)C13-O14	LP(2)N1	0.42	LP(1)O14	BD*(2)C10-O11	0.25			
LP(2)O12	BD*(2)C2-C3	0.79						
F	from CO_2^b to CO_2^c		Fro	m CO_2^c to thiazole				
LP(1)O12	BD*(3)C16-O15	0.46	BD(3)C16-O15	BD*(2)C2-C3	0.25			
LP(2)O12	BD*(3)C16-O15	1.21	LP(3)O17	LP(2)N1	0.21			
LP(3)O12	BD*(3)C16-O15	0.92	LP(3)O17	BD*(3)S4-C5	0.21			
			BD*(3)C16-O15	BD*(2)C2-C3	3.93			
F	from CO_2^a to CO_2^b		Fr	om CO_2^c to CO_2^b				
BD(3)C10-O11	BD*(3)C13-O14	0.25	LP(1)O17	BD*(2)C13-O14	0.29			
			LP(2)O17	BD*(2)C13-O14	1.30			
			LP(3)O17	BD*(2)C13-O14	0.25			

Table S7. The result of NBO analysis for the most stable isomer of the thiazole-(CO₂)₃ complex.

^aThe carbon atom number 10 of CO₂. ^bThe carbon atom number 13 of CO₂. ^cThe carbon atom number16 of CO₂. ^dBD for 2–center bond, LP for 1–center valence lone pair the unstarred and starred labels corresponding to Lewis and non–Lewis NBOs, respectively. ^eRY* for 1–center Rydberg, and BD* for 2–center antibond, the unstarred and starred labels corresponding to Lewis and non–Lewis NBOs, respectively.

J'	K_a'	K_c'	F'	$J^{\prime\prime}$	K_a''	K_c''	$F^{\prime\prime}$	v_{obs}/MHz	$\Delta v_{obs-calc}$ (MHz)
4	0	4	3	3	0	3	2	5996.3870	-0.0027
4	0	4	4	3	0	3	3	5996.4686	0.0025
4	0	4	5	3	0	3	4	5996.5063	-0.0005
4	2	3	4	3	2	2	4	6024.8101	0.0011
4	2	3	5	3	2	2	2	6025.3666	-0.0008
4	2	3	3	3	2	2	3	6025.5088	-0.0001
4	2	2	4	3	2	1	3	6056.0019	0.0004
4	2	2	5	3	2	1	4	6056.5491	-0.0006
4	2	2	3	3	2	1	2	6056.6919	0.0006
4	1	3	3	3	1	2	3	6271.1175	0.0006
4	1	3	5	3	1	2	2	6271.2425	0.0021
4	1	3	5	3	1	2	4	6271.2793	0.0000
5	1	5	5	4	1	4	4	7208.8215	-0.0009
5	1	5	4	4	1	4	3	7208.8617	-0.0020
5	1	5	6	4	1	4	5	7208.9158	-0.0008
5	0	5	4	4	0	4	3	7472.4623	0.0022
5	0	5	5	4	0	4	4	7472.4934	-0.0017
5	0	5	6	4	0	4	5	7472.5278	-0.0009
5	2	4	5	4	2	3	4	7527.3569	0.0008
5	2	4	6	4	2	3	5	7527.6504	0.0014
5	2	4	4	4	2	3	3	7527.6774	-0.0012
5	3	3	5	4	3	2	4	7544.2975	-0.0004
5	3	3	6	4	3	2	5	7544.9227	-0.0014
5	3	3	4	4	3	2	3	7545.0804	0.0025
5	3	2	5	4	3	1	4	7545.3265	0.0003
5	3	2	6	4	3	1	5	7545.9516	-0.0004
5	3	2	4	4	3	1	3	7546.1074	0.0013
5	2	3	5	4	2	2	4	7589.3788	-0.0004
5	2	3	6	4	2	2	5	7589.6611	0.0011
5	2	3	4	4	2	2	3	7589.6871	-0.0012
5	1	4	5	4	1	3	4	7832.7101	-0.0013
5	1	4	4	4	1	3	3	7832.7659	0.0014
5	1	4	6	4	1	3	5	7832.7978	-0.0032
6	1	6	6	5	1	5	5	8642.6892	0.0025
6	1	6	5	5	1	5	4	8642.7085	0.0018
6	1	6	7	5	1	5	6	8642.7502	0.0033
6	0	6	5	5	0	5	4	8933.8802	-0.0009
6	0	6	6	5	0	5	5	8933.9003	0.0039

Table S8. Experimental transition frequencies of the parent species of the thiazole-CO₂ complex.

6	0	6	7	5	0	5	6	8933.9249	-0.0016
6	2	5	6	5	2	4	5	9027.1532	0.0021
6	2	5	5	5	2	4	4	9027.3276	0.0016
6	2	5	7	5	2	4	6	9027.3276	0.0015
6	3	4	6	5	3	3	5	9056.9356	-0.0040
6	3	4	7	5	3	3	6	9057.3073	0.0006
6	3	4	5	5	3	3	4	9057.3608	-0.0029
6	3	3	6	5	3	2	5	9059.6764	-0.0006
6	3	3	7	5	3	2	6	9060.0435	0.0001
6	3	3	5	5	3	2	5	9060.0977	-0.0026
6	2	4	6	5	2	3	5	9134.5868	0.0015
6	2	4	5	5	2	3	4	9134.7456	0.0011
6	2	4	7	5	2	3	6	9134.7456	-0.0002
6	1	5	6	5	1	4	5	9389.8264	0.0004
6	1	5	5	5	1	4	4	9389.8536	-0.0003
6	1	5	7	5	1	4	6	9389.8829	-0.0003
7	1	7	7	6	1	6	6	10072.6330	-0.0004
7	1	7	6	6	1	6	5	10072.6502	0.0055
7	1	7	8	6	1	6	7	10072.6732	-0.0023
7	0	7	7	6	0	6	6	10378.9527	-0.0001
7	0	7	6	6	0	6	5	10378.9527	0.0038
7	0	7	8	6	0	6	7	10378.9793	-0.0018
7	2	6	7	6	2	5	6	10523.7480	-0.0005
7	2	6	6	6	2	5	5	10523.8508	-0.0033
7	2	6	8	6	2	5	7	10523.8669	0.0040
7	3	5	7	6	3	4	6	10570.9685	-0.0006
7	3	5	8	6	3	4	7	10571.2049	0.0019
7	3	5	6	6	3	4	5	10571.2208	-0.0035
7	3	4	7	6	3	3	6	10577.1096	-0.0022
7	3	4	8	6	3	3	7	10577.3486	0.0040
7	3	4	6	6	3	3	5	10577.3636	-0.0021
7	2	5	7	6	2	4	6	10692.8578	-0.0043
7	2	5	6	6	2	4	5	10692.9436	-0.0067
7	2	5	8	6	2	4	7	10692.9660	0.0057
7	1	6	7	6	1	5	6	10941.3131	-0.0005
7	1	6	8	6	1	5	7	10941.3524	-0.0017
8	1	8	8	7	1	7	7	11498.3479	0.0000
8	1	8	7	7	1	7	6	11498.3579	0.0032
8	1	8	9	7	1	7	8	11498.3758	-0.0036
8	0	8	8	7	0	7	7	11807.0062	0.0043

8	0	8	7	7	0	7	6	11807.0062	0.0015
8	0	8	9	7	0	7	8	11807.0260	-0.0027
8	2	7	8	7	2	6	7	12016.6652	0.0012
8	2	7	7	7	2	6	6	12016.7307	-0.0022
8	2	7	9	7	2	6	8	12016.7486	0.0048
8	3	6	8	7	3	5	7	12086.3579	-0.0005
8	3	6	9	7	3	5	8	12086.5144	-0.0024
8	3	6	7	7	3	5	6	12086.5272	0.0039
8	3	5	8	7	3	4	7	12098.5943	0.0000
8	3	5	9	7	3	4	8	12098.7496	-0.0012
8	3	5	7	7	3	4	6	12098. 7496	-0.0074
8	2	6	8	7	2	5	7	12264.3396	0.0025
8	2	6	7	7	2	5	6	12264.3817	-0.0058
8	2	6	9	7	2	5	8	12264.4020	0.0025
8	1	7	8	7	1	6	7	12485.8632	-0.0019
8	1	7	9	7	1	6	8	12485.8935	-0.0028
9	0	9	9	8	0	8	8	13218.6570	0.0009
9	0	9	8	8	0	8	7	13218.6662	0.0031
9	0	9	10	8	0	8	9	13218.6786	-0.0032
9	2	8	9	8	2	7	8	13505.4145	0.0015
9	2	8	10	8	2	7	9	13505.4759	0.0041
9	3	7	9	8	3	6	8	13602.9205	0.0020
9	3	7	8	8	3	6	7	13603.0323	0.0016
9	3	7	10	8	3	6	9	13603.0323	0.0014
9	3	6	9	8	3	5	8	13625.2161	-0.0027
9	3	6	8	8	3	5	7	13625.3298	0.0015
9	3	6	10	8	3	5	9	13625.3298	0.0012
9	2	7	9	8	2	6	8	13847.8336	0.0067
9	2	7	8	8	2	6	7	13847.8530	-0.0029
9	2	7	10	8	2	6	9	13847.8718	0.0042
9	1	8	9	8	1	7	8	14021.9978	-0.0056
9	1	8	10	8	1	7	9	14022.0311	0.0019
10	1	10	10	9	1	9	9	14336.4464	-0.0029
10	1	10	9	9	1	9	8	14336.4464	-0.0073
10	1	10	11	9	1	9	10	14336.4731	0.0033
10	0	10	10	9	0	9	9	14615.7857	-0.0050
10	0	10	9	9	0	9	8	14615.7926	-0.0073
10	0	10	11	9	0	9	10	14615.8170	0.0018
10	2	9	10	9	2	8	9	14989.5321	0.0041
10	2	9	9	9	2	8	8	14989.5607	-0.0024

10	2	9	11	9	2	8	10	14989.5758	0.0027
10	3	8	10	9	3	7	9	15120.3201	0.0007
10	3	8	9	9	3	7	8	15120.3992	0.0002
10	3	8	11	9	3	7	10	15120.3992	-0.0028
10	3	7	10	9	3	6	9	15158.2347	0.0020
10	3	7	9	9	3	6	8	15158.3116	0.0031
10	3	7	11	9	3	6	10	15158.3116	-0.0002
10	2	8	10	9	2	7	9	15440.8481	-0.0026
10	2	8	9	9	2	7	8	15440.8660	-0.0014
10	2	8	11	9	2	7	10	15440.8838	0.0057
10	1	9	10	9	1	8	9	15548.0808	-0.0032
10	1	9	11	9	1	8	10	15548.1138	0.0071
11	1	11	11	10	1	10	10	15748.8331	-0.0002
11	1	11	10	10	1	10	9	15748.8331	-0.0043
11	1	11	12	10	1	10	11	15748.8530	0.0022
11	0	11	12	10	0	10	10	16001.2341	-0.0040
11	0	11	11	10	0	10	11	16001.2664	0.0055
11	2	10	11	10	2	9	10	16468.5724	0.0032
11	2	10	10	10	2	9	9	16468.5908	-0.0055
11	2	10	12	10	2	9	11	16468.6046	-0.0006
11	3	9	11	10	3	8	10	16638.1030	-0.0022
11	3	9	12	10	3	8	11	16638.1647	-0.0032
11	3	8	11	10	3	7	10	16699.0189	0.0004
11	3	8	12	10	3	7	11	16699.0764	-0.0001
11	2	9	11	10	2	8	10	17039.9204	-0.0054
11	2	9	12	10	2	8	11	17039.9497	0.0049
11	1	10	11	10	1	9	10	17062.3139	-0.0046
11	1	10	12	10	1	9	11	17062.3437	0.0043
4	1	4	3	3	0	3	2	9151.9499	0.0012
4	1	4	4	3	0	3	3	9152.1046	-0.0019
4	1	4	5	3	0	3	4	9152.0834	0.0010
6	1	6	6	5	0	5	5	11534.6532	-0.0013
6	1	6	5	5	0	5	4	11534.6698	0.0006
6	1	6	7	5	0	5	6	11534.7102	0.0000
7	1	7	7	6	0	6	6	12673.3907	-0.0009
7	1	7	6	6	0	6	5	12673.4346	0.0018
7	1	7	8	6	0	6	7	12673.4580	-0.0013
8	1	8	8	7	0	7	7	13792.7852	-0.0014
8	1	8	7	7	0	7	6	13792.8393	0.0002
8	1	8	9	7	0	7	8	13792.8550	-0.0026

2	2	0	1	1	1	1	1	14303.2937	-0.0007
2	2	0	3	1	1	1	2	14304.4961	0.0012
2	2	0	2	1	1	1	1	14305.3405	-0.0009
2	2	0	2	1	1	1	2	14305.8086	-0.0022
9	1	9	9	8	0	8	8	14905.4252	-0.0001
9	1	9	8	8	0	8	7	14905.4766	-0.0037
9	1	9	10	8	0	8	9	14905.4985	0.0041
3	2	2	4	2	1	1	3	15558.1067	-0.0030
3	2	2	3	2	1	1	2	15558.3901	0.0002
3	2	2	2	2	1	1	1	15558.8946	0.0013
3	2	1	2	2	1	2	1	15948.4784	-0.0013
3	2	1	4	2	1	2	3	15948.9354	0.0022
3	2	1	3	2	1	2	2	15949.7527	-0.0003
10	1	10	10	9	0	9	9	16023.2184	-0.0001
10	1	10	9	9	0	9	8	16023.2717	0.0006
10	1	10	11	9	0	9	10	16023.2876	0.0053
4	2	3	3	3	1	2	2	16877.2217	-0.0020
4	2	3	5	3	1	2	4	16877.3841	0.0013
4	2	3	4	3	1	2	3	16877.6880	-0.0008
4	2	2	3	3	1	3	2	17673.7431	0.0017
4	2	2	5	3	1	3	4	17674.0160	-0.0004
4	2	2	4	3	1	3	3	17674.6589	-0.0011
5	2	4	4	4	1	3	3	18133.6634	0.0013
5	2	4	6	4	1	3	5	18133.7511	-0.0013
5	2	4	5	4	1	3	4	18133.9301	0.0033
6	2	5	5	5	1	4	4	19328.2241	0.0005
6	2	5	7	5	1	4	6	19328.2788	0.0013
6	2	5	6	5	1	4	5	19328.3638	-0.0026
5	2	3	4	4	1	4	3	19491.8653	0.0026
5	2	3	6	4	1	4	5	19492.0417	-0.0011
5	2	3	5	4	1	4	4	19492.5752	0.0013

J'	K_a'	K_c'	F'	J''	K_a''	K_c''	$F^{\prime\prime}$	v_{obs}/MHz	$\Delta \mathcal{V}_{obs-calc}$ (MHz)
4	0	4	3	3	0	3	2	5927.0614	-0.0061
4	0	4	4	3	0	3	3	5927.1462	0.0020
4	0	4	5	3	0	3	4	5927.1885	0.0038
5	1	5	5	4	1	4	4	7128.1468	-0.0008
5	1	5	4	4	1	4	3	7128.1888	0.0000
5	1	5	6	4	1	4	5	7128.2427	0.0009
5	0	5	4	4	0	4	3	7386.8877	0.0004
5	0	5	5	4	0	4	4	7386.9249	0.0023
5	0	5	6	4	0	4	5	7386.9535	-0.0024
6	0	6	5	5	0	5	4	8832.7086	0.0016
6	0	6	6	5	0	5	5	8832.7206	-0.0019
6	0	6	7	5	0	5	6	8832.7525	0.0001

Table S9. Experimental transition frequencies of the ¹³C2 isotopic species of the thiazole-CO₂ complex.

Table S10. Experimental transition frequencies of the ${}^{13}C5$ isotopic species of the thiazole-CO₂ complex.

J'	K_a'	K_c'	F'	$J^{\prime\prime}$	K_a''	K_c''	F''	v_{obs}/MHz	$\Delta \mathcal{V}_{obs-calc}$ (MHz)
4	0	4	4	3	0	3	3	5989.6134	-0.0036
4	0	4	5	3	0	3	4	5989.6578	0.0000
5	1	5	4	4	1	4	4	7199.4427	0.0047
5	1	5	6	4	1	4	3	7199.4797	0.0004
5	1	5	4	4	1	4	5	7199.5347	0.0025
5	0	5	4	4	0	4	3	7463.5646	0.0019
5	0	5	5	4	0	4	4	7463.5998	0.0021
5	0	5	6	4	0	4	5	7463.6311	-0.0002
6	1	6	6	5	1	5	5	8631.3136	-0.0015
6	1	6	7	5	1	5	6	8631.3704	-0.0049
6	0	6	5	5	0	5	6	8922.7361	-0.0027
6	0	6	6	5	0	5	4	8922.7586	0.0046
6	0	6	7	5	0	5	5	8922.7817	-0.0025

J'	K_a'	K_c'	F'	$J^{\prime\prime}$	K_a''	K_c''	$F^{\prime\prime}$	vobs/MHz	$\Delta \mathcal{V}_{obs-calc}$ (MHz)
5	1	5	5	4	1	4	4	7089.5335	-0.0056
5	1	5	4	4	1	4	3	7089.5899	0.0095
5	1	5	6	4	1	4	5	7089.6301	-0.0031
5	0	5	4	4	0	4	3	7347.1043	0.0010
5	0	5	5	4	0	4	4	7347.1398	0.0012
5	0	5	6	4	0	4	5	7347.1668	-0.0052
6	1	6	6	5	1	5	5	8499.9126	-0.0026
6	1	6	5	5	1	5	4	8499.9374	0.0022
6	1	6	7	5	1	5	6	8499.9711	-0.0042
6	0	6	5	5	0	5	4	8785.0049	-0.0014
6	0	6	6	5	0	5	5	8785.0282	0.0062
6	0	6	7	5	0	5	6	8785.0500	-0.0018
7	1	7	7	6	1	6	6	9906.5454	-0.0008
7	1	7	6	6	1	6	5	9906.5624	0.0049
7	1	7	8	6	1	6	7	9906.5913	0.0029
7	0	7	7	6	0	6	6	10207.2626	0.0021
7	0	7	6	6	0	6	5	10207.2626	0.0064
7	0	7	8	6	0	6	7	10207.2826	-0.0058
8	1	8	8	7	1	7	7	11309.1268	0.0027
8	1	8	7	7	1	7	6	11309.1335	0.0022
8	1	8	9	7	1	7	8	11309.1475	-0.0080
8	0	8	8	7	0	7	7	11613.1474	-0.0065
8	0	8	7	7	0	7	6	11613.1474	0.0039
8	0	8	9	7	0	7	8	11613.1655	-0.0021
9	0	9	10	8	0	8	9	13003.1642	-0.0019

Table S11. Experimental transition frequencies of the 34 S6 isotopic species of the thiazole-CO₂ complex.

J'	K_a'	K_c'	F'	$J^{\prime\prime}$	K_a''	K_c''	$F^{\prime\prime}$	vobs/MHz	$\Delta \mathcal{V}_{obs-calc}$ (MHz)
5	1	5	5	4	1	4	4	7152.2206	-0.0011
5	1	5	4	4	1	4	3	7152.2614	-0.0016
5	1	5	6	4	1	4	5	7152.3152	-0.0007
5	0	5	4	4	0	4	3	7414.1613	0.0011
5	0	5	5	4	0	4	4	7414.1940	-0.0011
5	0	5	6	4	0	4	5	7414.2224	-0.0064
6	1	6	6	5	1	5	5	8574.7758	0.0012
6	1	6	5	5	1	5	4	8574.7982	0.0036
6	1	6	7	5	1	5	6	8574.8340	-0.0007
6	0	6	7	5	0	5	4	8863.9562	-0.0004
6	0	6	5	5	0	5	5	8863.9767	0.0048
6	0	6	6	5	0	5	6	8864.0007	-0.0013
6	1	5	6	5	1	4	5	9317.7367	-0.0009
6	1	5	5	5	1	4	4	9317.7683	0.0026
6	1	5	7	5	1	4	6	9317.7945	-0.0004

Table S12. Experimental transition frequencies of the ${}^{13}C7$ isotopic species of the thiazole-CO₂ complex.

Table S13. Experimental transition frequencies of the ${}^{13}C8$ isotopic species of the thiazole-CO₂ complex.

J'	K_a'	K_c'	F'	$J^{\prime\prime}$	K_a''	K_c''	$F^{\prime\prime}$	v_{obs}/MHz	$\Delta \mathcal{V}_{obs-calc}$ (MHz)
4	1	3	3	3	1	2	2	6260.6609	-0.0021
4	1	3	5	3	1	2	4	6260.7030	0.0010
5	1	5	5	4	1	4	4	7187.9424	-0.0006
5	1	5	4	4	1	4	3	7187.9814	-0.0030
5	1	5	6	4	1	4	5	7188.0360	-0.0013
5	1	4	4	4	1	3	3	7819.2617	0.0022
5	1	4	6	4	1	3	5	7819.2934	-0.0026
6	1	6	6	5	1	5	5	8617.3089	-0.0007
6	1	6	5	5	1	5	4	8617.3348	0.0050
6	1	6	7	5	1	5	6	8617.3701	0.0001
6	0	6	5	5	0	5	4	8909.3935	-0.0024
6	0	6	6	5	0	5	5	8909.4147	0.0038
6	0	6	7	5	0	5	6	8909.4394	-0.0019
6	1	5	6	5	1	4	5	9373.1854	0.0023
6	1	5	5	5	1	4	4	9373.2103	-0.0008
6	1	5	7	5	1	4	6	9373.2403	-0.0001