Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

- Supporting Information to 'Experimental investigation
- and thermodynamic modelling assessment of the
- $AECl_2-NdCl_3$ (AE = Sr, Ba) systems'
- D.C. Alders^a, D.J. Cette^a, R.J.M. Konings^a, A.L. Smith^{a,*}
- ^aDelft University of Technology, Faculty of Applied Sciences, Radiation Science &
 Technology Department, Mekelweg 15, 2629 JB Delft, The Netherlands

7 1. Quenched samples profile refinements

- In this section, the refinements of the solid solution XRD measurements are
- presented.

^{*}Corresponding author
Email address: a.l.smith@tudelft.nl (A.L. Smith)

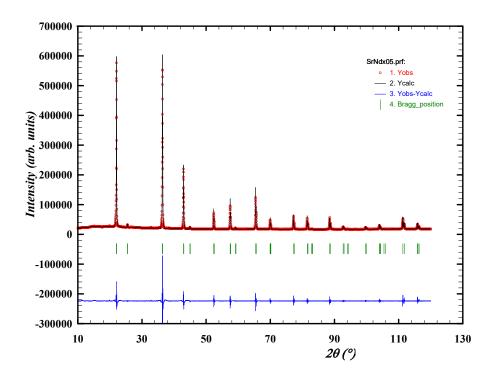


Figure 1: Profile refinement of the Sr-Nd-Cl system at $x_{NdCl_3}=0.05$ after quenching the sample from T=925 K. The observed intensity (Yobs, red) is plotted along with the calculated intensity from the refinement (Ycalc, black), and the difference between the two is shown (Yobs-Ycalc, blue). The angles at which reflections occurr are shown as well (Bragg positions, vertical lines). Measurement at $\lambda=Cu-K\alpha$.

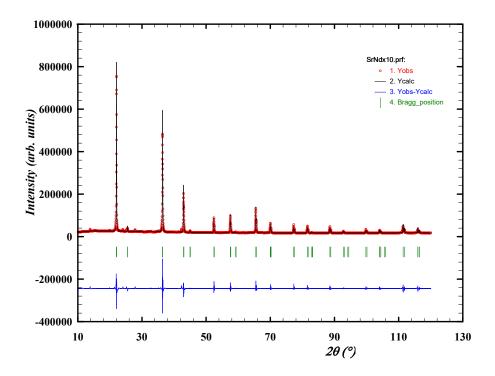


Figure 2: Profile refinement of the Sr-Nd-Cl system at $x_{NdCl_3}=0.10$ after quenching the sample from T=925 K. The observed intensity (Yobs, red) is plotted along with the calculated intensity from the refinement (Ycalc, black), and the difference between the two is shown (Yobs-Ycalc, blue). The angles at which reflections occurr are shown as well (Bragg positions, vertical lines). Measurement at $\lambda=Cu-K\alpha$.

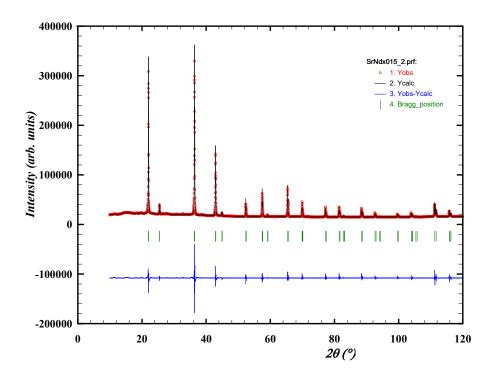


Figure 3: Profile refinement of the Sr-Nd-Cl system at $x_{NdCl_3}=0.15$ after quenching the sample from T=900 K. The observed intensity (Yobs, red) is plotted along with the calculated intensity from the refinement (Ycalc, black), and the difference between the two is shown (Yobs-Ycalc, blue). The angles at which reflections occurr are shown as well (Bragg positions, vertical lines). Measurement at $\lambda=Cu-K\alpha$.

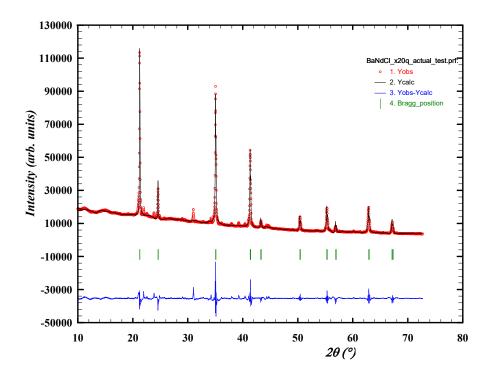


Figure 4: Profile refinement of the Ba-Nd-Cl system at $x_{NdCl_3}=0.2$ after quenching the sample from T=975 K. The observed intensity (Yobs, red) is plotted along with the calculated intensity from the refinement (Ycalc, black), and the difference between the two is shown (Yobs-Ycalc, blue). The angles at which reflections occurr are shown as well (Bragg positions, vertical lines). Measurement at $\lambda={\rm Cu-K}\alpha$.

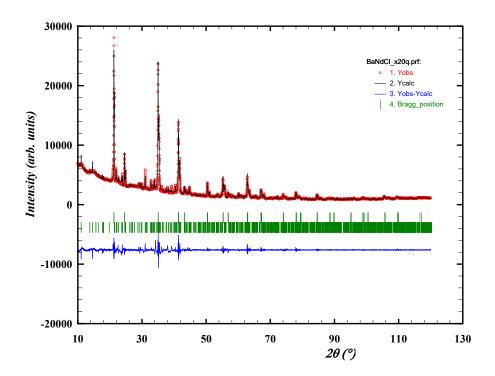


Figure 5: Profile refinement of the Ba-Nd-Cl system at $x_{NdCl_3}=0.25$ after quenching the sample from T=975 K. The observed intensity (Yobs, red) is plotted along with the calculated intensity from the refinement (Ycalc, black), and the difference between the two is shown (Yobs-Ycalc, blue). The angles at which reflections occurr are shown as well (Bragg positions, vertical lines). Measurement at $\lambda=Cu-K\alpha$.