Electronic supplementary information for

First-principles study of the surface energies and electronic structures of γ -CsSnI₃ surfaces

Tong Zhou¹, Yan-Jin Chen,¹ Chunju Hou², Yi Yang,¹

¹ College of Rare Earths and Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China

² School of Science, Jiangxi University of Science and Technology, Ganzhou, 341000, China

Calculating the surface energies of polar surfaces

Sn-rich condition is good for suppressing the formation of Sn-vacancy in CsSnI₃, which is considered as the most detrimental defect, promoting high luminescent efficiency.¹ For Sn-perovskites, Sn-rich condition may be achieved by the presence of excess Sn sources such as Sn metal and SnF₂ additive.^{2, 3} Nakamura et al. found that Sn metal nanoparticles are produced from the reaction of a dihydropyrizine derivative with SnF₂ (II) additive.³ Assuming Sn-rich condition (i.e., $\Delta\mu_{Sn} = 0$ eV), we obtain $\Delta\mu_{Cs} + 3\Delta\mu_I = -4.720$ eV for CsSnI₃. Combining Sn-rich with CsI-rich ($\Delta\mu_{Cs} + \Delta\mu_I = -3.081$ eV) conditions of stable CsSnI₃, we obtain: $\Delta\mu_{Cs} = -2.261$ eV and $\Delta\mu_I = -0.820$ eV. Similarly, we obtain: $\Delta\mu_{Cs} = -2.536$ eV and $\Delta\mu_I = -0.728$ eV at SnI₂-rich condition ($\Delta\mu_{Cs} + \Delta\mu_I = -3.264$ eV). The surface energies (*Esurf*) of (100), (010) and (101) polar surfaces are calculated at these conditions. In particular, the *Esurf* of (101) surface, either for CsI₃- or Sn-termination, only depends on $\Delta\mu_{Cs} + 3\Delta\mu_I$:

$$E_{surf}^{\text{CSI3}} = \lambda_{\text{CSI3}} - \frac{1}{s} (\Delta \mu_{Cs} + 3\Delta \mu_I)$$
(1)

$$E_{surf}^{\rm Sn} = \lambda_{\rm Sn} + \frac{1}{s} (\Delta \mu_{Cs} + 3\Delta \mu_I)$$
(2)

For Sn-rich condition, the E_{surf} of (101) surfaces can be calculated according to $\Delta \mu_{Cs} + 3\Delta \mu_I = -4.720$ eV and thus is independent of CsI-rich or SnI₂-rich condition.

Effect of dispersion force on the structures and surface energies

To show the effect of London dispersion force on the structures and surface energies, we use PBEsol+D3⁴ to calculate the structural parameters of CsSnI₃ bulk and the surface energies of (001) surfaces. It is seen from Table S2 that the structural parameters calculated by PBEsol and PBEsol+D3 are consistent with each other and agree well with experimental values. From Table S3, one can find that the surface energies of the CsI-(001) and SnI₂-(001) surfaces calculated from PBEsol+D3 are overall increased by 0.07 and 0.11 J/m², respectively, in comparison with the values obtained from PBEsol. It is worth noting that the difference in the surface energies between SnI₂-(001) and CsI-(001) surfaces increase about 0.04 J/m², indicating that CsI-termination remains the most stable compared with SnI₂-termination with the consideration of London dispersion force. Therefore, including London dispersion force in the calculations does not change the main conclusions based on PBEsol.

$E_{ m surf}$	350	eV	500 eV			
Terminations	CsI-rich	SnI ₂ -rich	CsI-rich	SnI ₂ -rich		
CsI-(001)	0.073	0.113	0.071	0.110		
SnI ₂ -(001)	0.196	0.156	0.194	0.154		

Table S1 Surface energies (E_{surf} , J/m²) of the CsSnI₃ (001) surfaces calculated by using the cutoff values of 350 eV and 500 eV.

Table S2 Structural parameters of γ -CsSnI₃ calculated by using PBEsol and PBEsol+D3. Experimental (Expt.) values⁵ are also listed here for a comparison.

	a (Å)	b	с
PBEsol	8.779	8.344	12.238
PBEsol+D3	8.525	8.510	12.225
Expt.	8.688	8.643	12.378

Table S3 Surface energies (E_{surf} , J/m²) of γ -CsSnI₃ (001) surfaces calculated by using PBEsol and PBEsol+D3.

$E_{ m surf}$	PBI	Esol	PBEsol+D3			
Terminations	CsI-rich	SnI ₂ -rich	CsI-rich	SnI ₂ -rich		
CsI-(001)	0.073	0.113	0.141	0.185		
SnI ₂ -(001)	0.196	0.156	0.309	0.265		

Table S4 Surface energies (E_{surf} , J/m²) of the (100), (010) and (101) polar surfaces. Assuming Sn-rich condition (i.e., $\Delta\mu_{Sn} = 0$ eV), the E_{surf} are calculated at CsI-rich: $\Delta\mu_{Cs} = -2.261 \ eV$ and $\Delta\mu_I = -0.820 \ eV$, and SnI₂-rich condition: $\Delta\mu_{Cs} = -2.536 \ eV$ and $\Delta\mu_I = -0.728 \ eV$.

$E_{ m surf}$	(100)		(01	10)	(101)		
	CsSnI I ₂		CsSnI	I ₂	CsI ₃	Sn	
CsI-rich	0.467	0.312	0.449	0.312	0.243	0.418	
SnI ₂ -rich	0.496	0.283	0.477	0.285	0.243	0.418	

Table S5 E_{surf} (J/m²) of polarity-compensated (010) surface. Three terminations (Cs, SnI and I) are considered for (010) surface. The E_{surf} values are calculated at the CsI-rich ($\Delta\mu_{Cs}+\Delta\mu_{I}=-3.081$ eV) and SnI₂-rich ($\Delta\mu_{Cs}+\Delta\mu_{I}=-3.264$ eV) conditions.

$E_{ m surf}$	(010)						
	Cs	Ι					
CsI-rich	0.120	0.231	0.118				
SnI ₂ -rich	0.175	0.177	0.118				

				(001)				
М	$E_{ m surf}$	Cs	MI	CsMI	I ₂	Ι	CsI	MI ₂
Sn	CsI-rich	0.119	0.246	0.467	0.312	0.118	0.073	0.196
	SnI ₂ -rich	0.176	0.189	0.496	0.283	0.118	0.113	0.156
Pb	CsI-rich	0.112	0.252	0.465	0.532	0.130	0.069	0.193
	PbI ₂ -rich	0.137	0.228	0.477	0.520	0.130	0.085	0.177

Table S6 E_{surf} (J/m²) of the (100) and (001) surfaces of CsSnI₃ and CsPbI₃. The E_{surf} of the (100) and (001) surfaces of CsPbI₃ are taken from a previous study.⁶

Table S7 Band gaps (E_g) of the (110), (001), (100) and (101) surfaces of CsSnI₃. The calculated band gap of the bulk is 0.53 eV. Nine-layers slabs are used for the (110) and (001) surfaces; thirteen-layers slabs for the (100)-Cs, (100)-SnI and (100)-I surfaces; fifteen-layers for the (101)-CsI₂ and (101)-I^{*}. These choices ensure a similar thickness of about 29 Å for all these slabs. Orbital-projected band structures and the effective masses in the main text and ESI are calculated using these slabs.

Surfaces	(110)		(001)		(100)			(101)	
Terminations	CsI	SnI ₂	CsI	SnI ₂	Cs	SnI	Ι	CsI_2	I*
\overline{E}_{g}	0.68	0.65	0.72	0.64	0.87	0.80	0.83	0.88	0.99

Table S8 Calculated effective mass (in units of the free-electron mass m_0) of hole (m_h) and electron (m_e) along Γ -M for the (110), (001), (100) and (101) surfaces.

Surfaces	(11	10)	(00)1)		(100)		(10)1)
Terminations	CsI	SnI_2	CsI	SnI_2	Cs	SnI	Ι	CsI_2	I*
$m_{ m h}$	0.26	0.26	0.31	0.34	0.54	0.39	0.45	0.65	0.73
m _e	0.30	0.74	0.36	0.41	0.55	0.97	0.52	1.06	2.41

Figure S1 Orbital-projected band structures of the CsSnI- and I₂-terminated (100) surfaces, and the Sn- and CsI₃-terminated (101) surfaces. The Fermi level is indicated by the horizontal dashed line.

Figure S2 Band structures calculated without (PBEsol) and with SOC (PBEsol+SOC) for: (a) the bulk; (b) CsI-(001) surface; (c) SnI_2 -(001) surface. The energy of the VBM is set as zero. Seven-layers slabs are used for the (001) surfaces.

Figure S3 Orbital-projected band structures of the (001)-CsI, (001)-SnI₂ and (100)-I surfaces. The energy of the VBM is set as zero.

References

- Q. Liu, J. Yin, B.-B. Zhang, J.-K. Chen, Y. Zhou, L.-M. Zhang, L.-M. Wang, Q. Zhao, J. Hou, J. Shu, B. Song, N. Shirahata, O. M. Bakr, O. F. Mohammed and H.-T. Sun, J. Am. Chem. Soc., 2021, 143, 5470-5480.
- 2. R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M. I. Saidaminov, Y. Gao, J.

Xu and M. Xiao, Nature Energy, 2019, 4, 864-873.

- T. Nakamura, S. Yakumaru, M. A. Truong, K. Kim, J. Liu, S. Hu, K. Otsuka, R. Hashimoto, R. Murdey, T. Sasamori, H. D. Kim, H. Ohkita, T. Handa, Y. Kanemitsu and A. Wakamiya, *Nature Commun.*, 2020, 11, 3008.
- 4. S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 5. K. Yamada, S. Funabiki, H. Horimoto, T. Matsui, T. Okuda, and S. Ichiba, *Chem. Lett.*, 1991, **20**, 801.
- 6. Y. Yang, Y.-J. Chen, C. Hou and T.-X. Liang, *J. Phys. Chem. C*, 2022, **126**, 21155-21161.